[1] |
WANG Y H, WANG D R, GUO Y C, et al. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration[J]. Regenerative Therapy, 2020, 15: 285-294.
DOI
URL
|
[2] |
DRELA K, STANASZEK L, NOWAKOWSKI A, et al. Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes[J]. Stem Cells International, 2019, 2019: 7012692.
|
[3] |
ZHANG F, PENG W X, ZHANG J, et al. New strategy of bone marrow mesenchymal stem cells against oxidative stress injury via Nrf2 pathway: oxidative stress preconditioning[J]. Journal of Cellular Biochemistry, 2019, 120(12): 19902-19914.
DOI
URL
|
[4] |
CHEN X J, WANG L, SONG X Y. Mitoquinone alleviates vincristine-induced neuropathic pain through inhibiting oxidative stress and apoptosis via the improvement of mitochondrial dysfunction[J]. Biomedicine & Pharmacotherapy, 2020, 125: 110003.
DOI
URL
|
[5] |
PLECITÁ-HLAVATÁ L, JEŽEK J, JEŽEK P. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 Acts as anti-oxidant at retarded electron transport or proton pumping within Complex I[J]. The International Journal of Biochemistry & Cell Biology, 2009, 41(8/9): 1697-1707.
DOI
URL
|
[6] |
APOSTOLOVA N, GARCIA-BOU R, HERNANDEZ-MIJARES A, et al. Mitochondrial antioxidants alleviate oxidative and nitrosative stress in a cellular model of Sepsis[J]. Pharmaceutical Research, 2011, 28(11): 2910-2919.
DOI
URL
|
[7] |
ZHANG J, BAO X W, ZHANG M Y, et al. MitoQ ameliorates testis injury from oxidative attack by repairing mitochondria and promoting the Keap1-Nrf2 pathway[J]. Toxicology and Applied Pharmacology, 2019, 370: 78-92.
DOI
URL
|
[8] |
TURINETTO V, VITALE E, GIACHINO C. Senescence in human mesenchymal stem cells: functional changes and implications in stem cell-based therapy[J]. International Journal of Molecular Sciences, 2016, 17(7): 1164.
DOI
URL
|
[9] |
STAB B R, MARTINEZ L, GRISMALDO A, et al. Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs[J]. Frontiers in Aging Neuroscience, 2016, 8: 299.
|
[10] |
SEOK J, JUNG H S, PARK S, et al. Alteration of fatty acid oxidation by increased CPT1A on replicative senescence of placenta-derived mesenchymal stem cells[J]. Stem Cell Research & Therapy, 2020, 11(1): 1-13.
|
[11] |
LI X, HONG Y M, HE H W, et al. FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 4915149.
|
[12] |
LEE J H, YOON Y M, SONG K H, et al. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway[J]. Aging Cell, 2020, 19(3): e13111.
|
[13] |
YANG F, YAN G G, LI Y, et al. Astragalus polysaccharide attenuated iron overload-induced dysfunction of mesenchymal stem cells via suppressing mitochondrial ROS[J]. Cellular Physiology and Biochemistry, 2016, 39(4): 1369-1379.
DOI
URL
|
[14] |
YOON Y M, KIM S, HAN Y S, et al. TUDCA-treated chronic kidney disease-derived hMSCs improve therapeutic efficacy in ischemic disease via PrPC[J]. Redox Biology, 2019, 22: 101144.
DOI
URL
|
[15] |
LI X, ZHAN J H, HOU Y, et al. Coenzyme Q10 regulation of apoptosis and oxidative stress in H2O2 induced BMSC death by modulating the nrf-2/NQO-1 signaling pathway and its application in a model of spinal cord injury[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 6493081.
|
[16] |
ZHANG D Y, YAN B X, YU S S, et al. Coenzyme Q10 inhibits the aging of mesenchymal stem cells induced by D-galactose through Akt/mTOR signaling[J]. Oxidative Medicine and Cellular Longevity, 2015, 2015: 867293.
|
[17] |
TAN D Q, SUDA T. Reactive oxygen species and mitochondrial homeostasis as regulators of stem cell fate and function[J]. Antioxidants & Redox Signaling, 2018, 29(2): 149-168.
|
[18] |
ESCRIBANO-LOPEZ I, BAÑULS C, DIAZ-MORALES N, et al. The mitochondria-targeted antioxidant MitoQ modulates mitochondrial function and endoplasmic Reticulum stress in pancreatic β cells exposed to hyperglycaemia[J]. Cellular Physiology and Biochemistry, 2019, 52(2): 186-197.
DOI
URL
|
[19] |
RAMSEY H, ZHANG Q, WU M X. Mitoquinone restores platelet production in irradiation-induced thrombocytopenia[J]. Platelets, 2015, 26(5): 459-466.
DOI
URL
|
[20] |
KANG L, LIU S W, LI J C, et al. The mitochondria-targeted anti-oxidant MitoQ protects against intervertebral disc degeneration by ameliorating mitochondrial dysfunction and redox imbalance[J]. Cell Proliferation, 2020, 53(3): e12779.
|
[21] |
ZHOU J, WANG H D, SHEN R M, et al. Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway[J]. American Journal of Translational Research, 2018, 10(6): 1887-1899.
|