[1] PIPERIGKOU Z, KARAMANOU K, ENGIN A B, et al.Emerging aspects of nanotoxicology in health and disease: from agriculture and food sector to cancer therapeutics[J]. Food and Chemical Toxicology, 2016, 91: 42-57. [2] 章军, 杨军, 朱心强. 纳米材料的环境和生态毒理学研究进展[J]. 生态毒理学报, 2006, 1(4): 350-356. ZHANG J, YANG J, ZHU X Q.The advancement of environmental and ecotoxicological research of nanomaterials[J]. Asian Journal of Ecotoxicology, 2006, 1(4): 350-356.(in Chinese with English abstract) [3] SERVICE R F.AMERICAN CHEMICAL SOCIETY MEETING: nanomaterials show signs of toxicity[J]. Science, 2003, 300(5617): 243. [4] LECOANET H F, BOTTERO J, WIESNER M R.Laboratory assessment of the mobility of nanomaterials in porous media[J]. Environmental Science & Technology, 2004, 38(19): 5164-5169. [5] 王发园. 人工纳米颗粒的植物毒性及其在植物中的吸收和累积[J]. 生态毒理学报, 2012, 7(2): 140-147. WANG F Y.Phytotoxicity of engineered nanoparticles (ENPs) and their uptake and accumulation in plants[J]. Asian Journal of Ecotoxicology, 2012, 7(2): 140-147.(in Chinese with English abstract) [6] MIRALLES P, CHURCH T L, HARRIS A T.Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science & Technology, 2012, 46(17): 9224-9239. [7] 汪玉洁, 陈日远, 刘厚诚, 等. 纳米材料在农业上的应用及其对植物生长和发育的影响[J]. 植物生理学报, 2017, 53(6): 933-942. WANG Y J, CHEN R Y, LIU H C, et al.Applications of nanomaterials in agriculture and its effects on the growth and development of plants[J]. Plant Physiology Journal, 2017, 53(6): 933-942.(in Chinese with English abstract) [8] 彭小凤, 朱敏, 任洁, 等. 纳米银的植物毒性研究进展[J]. 生态毒理学报, 2014, 9(2): 199-204. PENG X F, ZHU M, REN J, et al.Research progress in phytotoxicity of silver nanoparticles[J]. Asian Journal of Ecotoxicology, 2014, 9(2): 199-204.(in Chinese with English abstract) [9] GUBBINS E J, BATTY L C, LEAD J R.Phytotoxicity of silver nanoparticles to Lemna minor L.[J]. Environmental Pollution, 2011, 159(6): 1551-1559. [10] YIN L Y, CHENG Y W, ESPINASSE B, et al.More than the ions: the effects of silver nanoparticles on Lolium multiflorum[J]. Environmental Science & Technology, 2011, 45(6): 2360-2367. [11] JIANG H S, LI M, CHANG F Y, et al.Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza[J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1880-1886. [12] ANJUM N A, GILL S S, DUARTE A C, et al.Silver nanoparticles in soil-plant systems[J]. Journal of Nanoparticle Research, 2013, 15(9): 1896. [13] 贺学礼, 赵丽莉, 李英鹏. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响[J]. 生态学报, 2005, 25(1):188-193. HE X L, ZHAO L L, LI Y P.Effects of AM fungi on the growth and protective enzymes of cotton under NaCl stress[J]. Acta Ecologica Sinica, 2005, 25(1):188-193. (in Chinese with English abstract) [14] 吴强盛, 夏仁学, 胡正嘉. 丛枝菌根对枳实生苗抗旱性的影响研究[J]. 应用生态学报, 2005, 16(3): 459-463. WU Q S, XIA R X, HU Z J.Effects of arbuscular mycorrhiza on drought tolerance of Poncirus trifoliata[J]. Chinese Journal of Applied Ecology, 2005, 16(3): 459-463.(in Chinese with English abstract) [15] 张国漪, 程林, 黄立莹, 等. 菌根真菌协同死谷芽孢杆菌抑制棉花黄萎病[J]. 浙江农业学报, 2018, 30(6): 1008-1015. ZHANG G Y, CHENG L, HUANG L Y, et al.Synergetic inhibition against cotton Verticillium wilt disease of arbuscular mycorrhizal fungi cooperated with Bacillus vallismortis[J]. Acta Agriculturae Zhejiangensis, 2018, 30(6): 1008-1015.(in Chinese with English abstract) [16] 陈保冬, 李晓林, 朱永官. 丛枝菌根真菌菌丝体吸附重金属的潜力及特征[J]. 菌物学报, 2005, 24(2): 283-291. CHEN B D, LI X L, ZHU Y G.Characters of metal adsorption by AM fungal Mycelium[J]. Mycosystema, 2005, 24(2): 283-291.(in Chinese with English abstract) [17] GONZÁLEZ-CHÁVEZ M C, CARRILLO-GONZÁLEZ R, WRIGHT S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Pollution, 2004, 130(3): 317-323. [18] WANG F Y, LIU X Q, SHI Z Y, et al.Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants: a soil microcosm experiment[J]. Chemosphere, 2016, 147: 88-97. [19] FENG Y Z, CUI X C, HE S Y, et al.The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth[J]. Environmental Science & Technology, 2013, 47(16): 9496-9504. [20] NOORI A, WHITE J C, NEWMAN L A.Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure[J]. Journal of Nanoparticle Research, 2017, 19(2): 66. [21] TROUVELOT A, KOUGH J L, GIANINAZZI-PEARSON V.Mesure du tauxdemycorhization VA d’un system eradiculaire. Recherche de methods d’estimatio nayantune signification function nelle[M]//GIANINAZZI-PEARSON V, GIANINAZZI S. Physiological andgenetical aspects of Mycorrhizae. INRA, Paris, 1986:217-221. [22] 魏晓东, 陈国祥, 施大伟, 等. 干旱胁迫对银杏叶片光合系统Ⅱ荧光特性的影响[J]. 生态学报, 2012, 32(23): 7492-7500. WEI X D, CHEN G X, SHI D W, et al.Effects of drought on fluorescence characteristics of photosystem Ⅱ in leaves of Ginkgo biloba[J]. Acta Ecologica Sinica, 2012, 32(23): 7492-7500.(in Chinese with English abstract) [23] DUBCHAK S, OGAR A, MIETELSKI J W, et al.Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus[J]. Spanish Journal of Agricultural Research, 2010, 8(S1): 103. [24] JUDY J D, KIRBY J K, CREAMER C, et al.Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil[J]. Environmental Pollution, 2015, 206: 256-263. [25] 肖怡, 朱新广. 叶绿素荧光及碳氧同位素信号在光合作用研究中的应用[J]. 植物生理学报, 2016, 52(11): 1663-1670. XIAO Y, ZHU X G.Chlorophyll fluorescence and stable isotope signals in photosynthesis research[J]. Plant Physiology Journal, 2016, 52(11): 1663-1670.(in Chinese with English abstract) [26] 陈良华, 赖娟, 胡相伟, 等. 接种丛枝菌根真菌对受镉胁迫美洲黑杨雌、雄株光合生理的影响[J]. 植物生态学报, 2017, 41(4): 480-488. CHEN L H, LAI J, HU X W, et al.Effects of inoculation with arbuscular mycorrhizal fungi on photosynthetic physiology in females and males of Populus deltoides exposed to cadmium pollution[J]. Acta Phytoecologica Sinica, 2017, 41(4): 480-488.(in Chinese with English abstract) [27] 胡文海, 曾建军, 曹玉林, 等. 干旱胁迫对两种辣椒叶片气体交换和叶绿素荧光特性的影响[J]. 干旱地区农业研究, 2008, 26(5): 156-159. HU W H, ZENG J J, CAO Y L, et al.Effects of drought stress on gas exchange and chlorophyll fluorescence characteristics in leaves of two pepper(Capsicum annuum L) varieties[J]. Agricultural Research in the Arid Areas, 2008, 26(5): 156-159.(in Chinese with English abstract) [28] 孙璐, 周宇飞, 李丰先, 等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响[J]. 中国农业科学, 2012, 45(16): 3265-3272. SUN L, ZHOU Y F, LI F X, et al.Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of Sorghum seedlings[J]. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272.(in Chinese with English abstract) [29] 李旭新, 刘炳响, 郭智涛, 等. NaCl胁迫下黄连木叶片光合特性及快速叶绿素荧光诱导动力学曲线的变化[J]. 应用生态学报, 2013, 24(9): 2479-2484. LI X X, LIU B X, GUO Z T, et al.Effects of NaCl stress on photosynthesis characteristics and fast chlorophyll fluorescence induction dynamics of Pistacia chinensis leaves[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2479-2484.(in Chinese with English abstract) [30] 孙山, 徐秀玉, 程来亮, 等. 干旱胁迫下硅对平邑甜茶光合功能的影响[J]. 植物生理学报, 2015, 51(12): 2231-2238. SUN S, XU X Y, CHENG L L, et al.Effect of silicon on photosynthetic functions of Malus hupehensis under drought stress[J]. Plant Physiology Journal, 2015, 51(12): 2231-2238.(in Chinese with English abstract) [31] 王发园, 林先贵. 丛枝菌根与土壤修复[M]. 北京:科学出版社, 2015. [32] SHI Z Y, ZHANG J C, WANG F Y, et al.Arbuscular mycorrhizal inoculation increases molybdenum accumulation but decreases molybdenum toxicity in maize plants grown in polluted soil[J]. RSC Advances, 2018, 8(65): 37069-37076. |