浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 689-700.DOI: 10.3969/j.issn.1004-1524.20240352
徐汇镔1,2,3(), 朱洁1,2,3,*(
), 周朝生1,2,3, 胡园1,2,3, 陆荣茂1,2,3
收稿日期:
2024-04-16
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
徐汇镔(1994—),男,浙江温州人,学士,助理工程师,从事水产养殖及水产品质量安全研究工作。E-mail:361233617@qq.com
通讯作者:
* 朱洁,E-mail:441871423@qq.com
基金资助:
XU Huibin1,2,3(), ZHU Jie1,2,3,*(
), ZHOU Chaosheng1,2,3, HU yuan1,2,3, LU Rongmao1,2,3
Received:
2024-04-16
Online:
2025-03-25
Published:
2025-04-02
摘要:
为建立大黄鱼、鲫鱼、中华鳖等大宗养殖水产品中高风险喹诺酮类抗生素的通用、高效、准确的残留分析方法,利用超声振荡联用法对目标物进行提取,经液液萃取完成净化并采用UPLC-MS/MS测定。通过提取试剂中的酸含量、振荡时间、超声时间、氮吹压力、温度等变量结合Box-Behnken响应面分析确定最优前处理条件。同时评价大黄鱼、鲫鱼、中华鳖、南美白对虾、青蟹及其性腺、缢蛏中目标物的基质效应,并通过同位素内标、基质匹配曲线探讨了基质效应的补偿途径。结果表明:6种目标物的平均回收率为82.20%~118.00%;在0.2~20 ng·mL-1线性范围内,线性相关系数均大于0.997,氧氟沙星、洛美沙星、诺氟沙星、培氟沙星、环丙沙星检出限为0.1 μg·kg-1,恩诺沙星检出限为0.5 μg·kg-1,定量限均为1.0 μg·kg-1。该方法满足水产品中喹诺酮类残留的检测要求。南美白对虾、青蟹性腺、大黄鱼基质对6种目标物均有不同程度的抑制作用,基质匹配曲线和内标法均可使基质效应得到有效补偿。
中图分类号:
徐汇镔, 朱洁, 周朝生, 胡园, 陆荣茂. 基于响应面分析的养殖水产品中高风险喹诺酮类抗生素残留及其基质效应研究[J]. 浙江农业学报, 2025, 37(3): 689-700.
XU Huibin, ZHU Jie, ZHOU Chaosheng, HU yuan, LU Rongmao. Study for the determination of high-risk quinolone antibiotics residues and its matrix effect in cultured aquatic products by UPLC-MS/MS based on response surface analysis[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 689-700.
时间t/min | A/% | B/% |
---|---|---|
0.30 | 5.0 | 95.0 |
5.40 | 50.0 | 50.0 |
5.80 | 50.0 | 50.0 |
6.00 | 5.0 | 95.0 |
表1 梯度洗脱程序
Table 1 Gradient elution program
时间t/min | A/% | B/% |
---|---|---|
0.30 | 5.0 | 95.0 |
5.40 | 50.0 | 50.0 |
5.80 | 50.0 | 50.0 |
6.00 | 5.0 | 95.0 |
待测化合物 Target | 母离子 Parents | 子离子 Daughter | 锥孔电压 Cone/V | 碰撞能量 Collision/eV |
---|---|---|---|---|
氧氟沙星 | 362 | 318* | 32 | 26 |
Ofloxacin | 261 | 18 | ||
洛美沙星 | 352 | 265* | 32 | 22 |
Lomefloxacin | 334 | 19 | ||
培氟沙星 | 334 | 290* | 32 | 24 |
Pefloxacin | 233 | 17 | ||
诺氟沙星 | 320 | 302* | 32 | 22 |
Norfloxacin | 233 | 20 | ||
恩诺沙星 | 360 | 316* | 32 | 24 |
Enrofloxacin | 245 | 18 | ||
环丙沙星 | 332 | 314* | 32 | 35 |
Ciprofloxacin | 231 | 22 |
表2 待测物与内标物的检测离子对参数
Table 2 Ion pair parameters
待测化合物 Target | 母离子 Parents | 子离子 Daughter | 锥孔电压 Cone/V | 碰撞能量 Collision/eV |
---|---|---|---|---|
氧氟沙星 | 362 | 318* | 32 | 26 |
Ofloxacin | 261 | 18 | ||
洛美沙星 | 352 | 265* | 32 | 22 |
Lomefloxacin | 334 | 19 | ||
培氟沙星 | 334 | 290* | 32 | 24 |
Pefloxacin | 233 | 17 | ||
诺氟沙星 | 320 | 302* | 32 | 22 |
Norfloxacin | 233 | 20 | ||
恩诺沙星 | 360 | 316* | 32 | 24 |
Enrofloxacin | 245 | 18 | ||
环丙沙星 | 332 | 314* | 32 | 35 |
Ciprofloxacin | 231 | 22 |
图1 不同酸度盐酸乙腈对6种喹诺酮类抗生素回收率的影响 不同处理柱上没有相同小写字母表示差异显著(P<0.05)。
Fig.1 Recovery rate of 6 kinds of quinolone antibiotics in different acidity of acetonitrile and hydrochloric acid The bars of different treatments with different lowercase letters show the significant difference (P<0.05).
处理Treatment | OFL | LOM | NOR | PEF | ENR | CIP |
---|---|---|---|---|---|---|
乙腈ACN | 55.00±7.35 b | 41.33±1.41 c | 21.17±2.09 c | 65.00±17.44 c | 74.57±20.55 b | 27.27±1.62 c |
2% HCl(1+1)-ACN | 97.70±4.00 a | 90.70±4.36 a | 85.80±3.70 a | 100.97±5.03 a | 106.10±5.03 a | 75.20±4.26 a |
2% HCOOH-ACN | 68.93±13.70 b | 66.50±12.84 b | 55.63±12.16 b | 66.33±14.31 b | 55.33±14.30 b | 48.73±8.80 b |
表3 乙腈和酸化乙腈提取对6种喹诺酮类抗生素回收率的影响
Table 3 Recoveries of 6 kinds of quinolone antibiotics in acetonitrile and acidity acetonitrile %
处理Treatment | OFL | LOM | NOR | PEF | ENR | CIP |
---|---|---|---|---|---|---|
乙腈ACN | 55.00±7.35 b | 41.33±1.41 c | 21.17±2.09 c | 65.00±17.44 c | 74.57±20.55 b | 27.27±1.62 c |
2% HCl(1+1)-ACN | 97.70±4.00 a | 90.70±4.36 a | 85.80±3.70 a | 100.97±5.03 a | 106.10±5.03 a | 75.20±4.26 a |
2% HCOOH-ACN | 68.93±13.70 b | 66.50±12.84 b | 55.63±12.16 b | 66.33±14.31 b | 55.33±14.30 b | 48.73±8.80 b |
水平 Level | 因素Factor | |||
---|---|---|---|---|
氮吹温度 Nitrogen blowing temperature/℃ | 盐酸浓度 Hydrochloric acid concentration/% | 振荡时间 Oscillation time/min | 超声时间 Ultrasound time/min | |
-1 | 40 | 0 | 0 | 0 |
0 | 50 | 1 | 5 | 15 |
1 | 70 | 2 | 10 | 30 |
表4 响应面分析因素及编码水平
Table 4 Response surface analysis factors and coding level
水平 Level | 因素Factor | |||
---|---|---|---|---|
氮吹温度 Nitrogen blowing temperature/℃ | 盐酸浓度 Hydrochloric acid concentration/% | 振荡时间 Oscillation time/min | 超声时间 Ultrasound time/min | |
-1 | 40 | 0 | 0 | 0 |
0 | 50 | 1 | 5 | 15 |
1 | 70 | 2 | 10 | 30 |
轮次 Run | 氮吹温度 Nitrogen blowing temperature/℃ | 盐酸浓度 Hydrochloric acid concentration/% | 振荡时间 Oscillation time/min | 超声时间 Ultrasound time/min | 回收率 Recovery rate/% |
---|---|---|---|---|---|
1 | -1 | 0 | 0 | 1 | 55.3 |
2 | 0 | -1 | 0 | 1 | 94.8 |
3 | -1 | 0 | 1 | 0 | 94.7 |
4 | 0 | 1 | 0 | 1 | 85.9 |
5 | 0 | 0 | -1 | 1 | 88.9 |
6 | 1 | 0 | -1 | 0 | 85.9 |
7 | 0 | 0 | 0 | 0 | 70.4 |
8 | -1 | -1 | 0 | 0 | 50.1 |
9 | 1 | 0 | 0 | 1 | 72.0 |
10 | 0 | -1 | -1 | 0 | 66.0 |
11 | 0 | -1 | 1 | 0 | 112.8 |
12 | 1 | -1 | 0 | 0 | 95.2 |
13 | 0 | 1 | 1 | 0 | 105.3 |
14 | 1 | 1 | 0 | 0 | 95.7 |
15 | -1 | 0 | 0 | -1 | 95.3 |
16 | 0 | 0 | 1 | -1 | 104.0 |
17 | 0 | 1 | -1 | 0 | 102.9 |
18 | 0 | 0 | 0 | 0 | 100.9 |
19 | 1 | 0 | 0 | -1 | 94.1 |
20 | 0 | 0 | 1 | 1 | 86.3 |
21 | 0 | -1 | 0 | -1 | 90.7 |
22 | 0 | 0 | 0 | 0 | 90.7 |
23 | 0 | 1 | 0 | -1 | 94.2 |
24 | -1 | 1 | 0 | 0 | 46.1 |
25 | 0 | 0 | 0 | 0 | 83.1 |
26 | 0 | 0 | 0 | 0 | 75.9 |
27 | 0 | 0 | -1 | -1 | 78.5 |
28 | -1 | 0 | -1 | 0 | 73.8 |
29 | 1 | 0 | 1 | 0 | 80.3 |
表5 响应面设计及结果
Table 5 Results of response surface design
轮次 Run | 氮吹温度 Nitrogen blowing temperature/℃ | 盐酸浓度 Hydrochloric acid concentration/% | 振荡时间 Oscillation time/min | 超声时间 Ultrasound time/min | 回收率 Recovery rate/% |
---|---|---|---|---|---|
1 | -1 | 0 | 0 | 1 | 55.3 |
2 | 0 | -1 | 0 | 1 | 94.8 |
3 | -1 | 0 | 1 | 0 | 94.7 |
4 | 0 | 1 | 0 | 1 | 85.9 |
5 | 0 | 0 | -1 | 1 | 88.9 |
6 | 1 | 0 | -1 | 0 | 85.9 |
7 | 0 | 0 | 0 | 0 | 70.4 |
8 | -1 | -1 | 0 | 0 | 50.1 |
9 | 1 | 0 | 0 | 1 | 72.0 |
10 | 0 | -1 | -1 | 0 | 66.0 |
11 | 0 | -1 | 1 | 0 | 112.8 |
12 | 1 | -1 | 0 | 0 | 95.2 |
13 | 0 | 1 | 1 | 0 | 105.3 |
14 | 1 | 1 | 0 | 0 | 95.7 |
15 | -1 | 0 | 0 | -1 | 95.3 |
16 | 0 | 0 | 1 | -1 | 104.0 |
17 | 0 | 1 | -1 | 0 | 102.9 |
18 | 0 | 0 | 0 | 0 | 100.9 |
19 | 1 | 0 | 0 | -1 | 94.1 |
20 | 0 | 0 | 1 | 1 | 86.3 |
21 | 0 | -1 | 0 | -1 | 90.7 |
22 | 0 | 0 | 0 | 0 | 90.7 |
23 | 0 | 1 | 0 | -1 | 94.2 |
24 | -1 | 1 | 0 | 0 | 46.1 |
25 | 0 | 0 | 0 | 0 | 83.1 |
26 | 0 | 0 | 0 | 0 | 75.9 |
27 | 0 | 0 | -1 | -1 | 78.5 |
28 | -1 | 0 | -1 | 0 | 73.8 |
29 | 1 | 0 | 1 | 0 | 80.3 |
方差来源 Source | 平方和 SS | 自由度 dF | 均方 MS | F值 F value | P值(Prob >F) P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型 | 6 970.19 | 14 | 497.87 | 12.86 | <0.000 1 | ** |
A | 383.70 | 1 | 383.70 | 9.910 | 0.007 1 | ** |
B | 2 353.71 | 1 | 2 353.71 | 60.79 | <0.000 1 | ** |
C | 51.28 | 1 | 51.28 | 1.320 | 0.269 1 | 不显著Not significant |
D | 6.20 | 1 | 6.20 | 0.160 | 0.695 2 | 不显著Not significant |
A2 | 1 337.37 | 1 | 1 337.37 | 34.540 | <0.000 1 | ** |
B2 | 2 930.16 | 1 | 2 930.16 | 75.680 | <0.000 1 | ** |
C2 | 0.58 | 1 | 0.58 | 0.015 | 0.904 0 | 不显著Not significant |
D2 | 28.09 | 1 | 28.09 | 0.730 | 0.408 7 | 不显著Not significant |
AB | 3.24 | 1 | 3.24 | 0.084 | 0.776 6 | 不显著Not significant |
AC | 2.80 | 1 | 2.80 | 0.072 | 0.792 1 | 不显著Not significant |
AD | 32.11 | 1 | 32.11 | 0.830 | 0.377 9 | 不显著Not significant |
BC | 38.10 | 1 | 38.10 | 0.980 | 0.338 1 | 不显著Not significant |
BD | 121.18 | 1 | 121.18 | 3.130 | 0.098 6 | 不显著Not significant |
CD | 29.31 | 1 | 29.31 | 0.760 | 0.398 9 | 不显著Not significant |
残项Residual | 542.07 | 14 | 38.72 | |||
失拟项Lack of fit | 451.23 | 10 | 45.12 | 1.990 | 0.265 4 | 不显著Not significant |
纯误差Pure error | 90.84 | 4 | 22.71 | |||
总和Sum | 7 512.27 | 28 | 497.87 | 12.860 |
表6 响应面模型方差分析表
Table 6 Variance analysis table
方差来源 Source | 平方和 SS | 自由度 dF | 均方 MS | F值 F value | P值(Prob >F) P value | 显著性 Significance |
---|---|---|---|---|---|---|
模型 | 6 970.19 | 14 | 497.87 | 12.86 | <0.000 1 | ** |
A | 383.70 | 1 | 383.70 | 9.910 | 0.007 1 | ** |
B | 2 353.71 | 1 | 2 353.71 | 60.79 | <0.000 1 | ** |
C | 51.28 | 1 | 51.28 | 1.320 | 0.269 1 | 不显著Not significant |
D | 6.20 | 1 | 6.20 | 0.160 | 0.695 2 | 不显著Not significant |
A2 | 1 337.37 | 1 | 1 337.37 | 34.540 | <0.000 1 | ** |
B2 | 2 930.16 | 1 | 2 930.16 | 75.680 | <0.000 1 | ** |
C2 | 0.58 | 1 | 0.58 | 0.015 | 0.904 0 | 不显著Not significant |
D2 | 28.09 | 1 | 28.09 | 0.730 | 0.408 7 | 不显著Not significant |
AB | 3.24 | 1 | 3.24 | 0.084 | 0.776 6 | 不显著Not significant |
AC | 2.80 | 1 | 2.80 | 0.072 | 0.792 1 | 不显著Not significant |
AD | 32.11 | 1 | 32.11 | 0.830 | 0.377 9 | 不显著Not significant |
BC | 38.10 | 1 | 38.10 | 0.980 | 0.338 1 | 不显著Not significant |
BD | 121.18 | 1 | 121.18 | 3.130 | 0.098 6 | 不显著Not significant |
CD | 29.31 | 1 | 29.31 | 0.760 | 0.398 9 | 不显著Not significant |
残项Residual | 542.07 | 14 | 38.72 | |||
失拟项Lack of fit | 451.23 | 10 | 45.12 | 1.990 | 0.265 4 | 不显著Not significant |
纯误差Pure error | 90.84 | 4 | 22.71 | |||
总和Sum | 7 512.27 | 28 | 497.87 | 12.860 |
标号 No. | 基质类型 Varieties | 氧氟沙星 OFL | 洛美沙星 LOM | 诺氟沙星 NOR | 培氟沙星 PEF | 恩诺沙星 ENR | 环丙沙星 CIP |
---|---|---|---|---|---|---|---|
1 | 缢蛏Sinonovacula constricta | 0.99 | 0.99 | 0.93 | 1.15 | 1.09 | 0.92 |
2 | 中华鳖Trionyx sinensis | 0.99 | 0.97 | 0.96 | 1.13 | 1.04 | 0.94 |
3 | 石蛙Quasipaa spinosa | 0.93 | 0.94 | 0.93 | 1.06 | 1.00 | 0.90 |
4 | 南美白对虾1 No. 1 of Litopenaeus Vannamei | 0.59 | 0.66 | 0.71 | 0.67 | 0.60 | 0.71 |
南美白对虾2 No.2 of Litopenaeus Vannamei | 0.75 | 0.69 | 0.65 | 0.78 | 0.75 | 0.57 | |
5 | 大黄鱼Larimichthys crocea | 0.79 | 0.80 | 0.79 | 0.83 | 0.83 | 0.78 |
6 | 鲫鱼Carassius auratus | 0.88 | 0.86 | 0.85 | 1.01 | 0.94 | 0.84 |
7 | 青蟹Scylla serrata | 1.03 | 0.96 | 0.84 | 1.06 | 1.02 | 0.78 |
8 | 青蟹性腺Gonad of Scylla serrata | 0.71 | 0.67 | 0.64 | 0.82 | 0.73 | 0.58 |
表7 不同基质MF值
Table 7 MF value of different matrices
标号 No. | 基质类型 Varieties | 氧氟沙星 OFL | 洛美沙星 LOM | 诺氟沙星 NOR | 培氟沙星 PEF | 恩诺沙星 ENR | 环丙沙星 CIP |
---|---|---|---|---|---|---|---|
1 | 缢蛏Sinonovacula constricta | 0.99 | 0.99 | 0.93 | 1.15 | 1.09 | 0.92 |
2 | 中华鳖Trionyx sinensis | 0.99 | 0.97 | 0.96 | 1.13 | 1.04 | 0.94 |
3 | 石蛙Quasipaa spinosa | 0.93 | 0.94 | 0.93 | 1.06 | 1.00 | 0.90 |
4 | 南美白对虾1 No. 1 of Litopenaeus Vannamei | 0.59 | 0.66 | 0.71 | 0.67 | 0.60 | 0.71 |
南美白对虾2 No.2 of Litopenaeus Vannamei | 0.75 | 0.69 | 0.65 | 0.78 | 0.75 | 0.57 | |
5 | 大黄鱼Larimichthys crocea | 0.79 | 0.80 | 0.79 | 0.83 | 0.83 | 0.78 |
6 | 鲫鱼Carassius auratus | 0.88 | 0.86 | 0.85 | 1.01 | 0.94 | 0.84 |
7 | 青蟹Scylla serrata | 1.03 | 0.96 | 0.84 | 1.06 | 1.02 | 0.78 |
8 | 青蟹性腺Gonad of Scylla serrata | 0.71 | 0.67 | 0.64 | 0.82 | 0.73 | 0.58 |
目标分析物 Target | 加标量 Addition amount/ (μg·kg-1) | 回收率Recovery rate/% | ||
---|---|---|---|---|
溶剂曲线计算 Solvent curve | 基质曲线矫正 Matrix curve | 内标矫正 Internal standard correction | ||
氧氟沙星OFL | 5.0 | 43.9 | 78.0 | 78.9 |
洛美沙星LOM | 5.0 | 39.2 | 75.6 | 80.2 |
诺氟沙星NOR | 5.0 | 42.7 | 68.1 | 84.8 |
培氟沙星PEF | 5.0 | 59.5 | 73.6 | 83.4 |
恩诺沙星ENR | 5.0 | 47.8 | 64.9 | 85.1 |
环丙沙星CIP | 5.0 | 41.0 | 57.1 | 87.1 |
表8 基质效应消除或补偿
Table 8 Matrix effect elimination or compensation
目标分析物 Target | 加标量 Addition amount/ (μg·kg-1) | 回收率Recovery rate/% | ||
---|---|---|---|---|
溶剂曲线计算 Solvent curve | 基质曲线矫正 Matrix curve | 内标矫正 Internal standard correction | ||
氧氟沙星OFL | 5.0 | 43.9 | 78.0 | 78.9 |
洛美沙星LOM | 5.0 | 39.2 | 75.6 | 80.2 |
诺氟沙星NOR | 5.0 | 42.7 | 68.1 | 84.8 |
培氟沙星PEF | 5.0 | 59.5 | 73.6 | 83.4 |
恩诺沙星ENR | 5.0 | 47.8 | 64.9 | 85.1 |
环丙沙星CIP | 5.0 | 41.0 | 57.1 | 87.1 |
图5 六种喹诺酮标准溶液(a)、内标溶液(b)、基质中标准品图谱(c、d、e:大黄鱼、中华鳖、牛蛙)
Fig.5 Chromatogram of 6 quinolones standard solution(a), internal standard solution(b) and spiked Larimichthys crocea, Trionyx sinensis, Lithobates catesbeiana sample(c, d, e)
水产品 Aquatic products | 加标量 Addition amount/ (μg·kg-1) | 氧氟沙星OLF | 洛美沙星LOM | 诺氟沙星NOR | 培氟沙星PEF | 恩诺沙星ENR | 环丙沙星CIP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | ||
大黄鱼 | 1 | 89.17 | 3.38 | 94.67 | 5.08 | 110.00 | 7.32 | 112.00 | 6.76 | 104.50 | 4.56 | 88.33 | 5.58 |
Larimichthys | 5 | 84.77 | 2.55 | 94.37 | 6.01 | 93.73 | 2.02 | 86.10 | 1.57 | 95.50 | 4.77 | 89.83 | 1.65 |
crocea | 10 | 84.73 | 9.13 | 97.47 | 9.47 | 100.27 | 5.58 | 93.97 | 3.18 | 92.23 | 1.07 | 83.17 | 2.75 |
100 | 94.02 | 1.47 | 90.67 | 2.25 | 94.24 | 4.08 | 99.59 | 0.20 | 96.71 | 2.75 | 106.39 | 2.22 | |
中华鳖 | 1 | 117.00 | 4.27 | 113.50 | 6.06 | 101.17 | 4.95 | 111.00 | 2.25 | 118.00 | 1.12 | 95.33 | 7.68 |
Trionyx | 5 | 90.83 | 3.26 | 102.30 | 5.65 | 104.63 | 3.45 | 92.97 | 3.25 | 91.57 | 3.12 | 90.57 | 2.07 |
sinensis | 10 | 92.90 | 1.56 | 105.43 | 2.35 | 105.93 | 2.10 | 95.30 | 2.38 | 90.50 | 0.92 | 93.37 | 0.90 |
100 | 93.91 | 0.87 | 91.03 | 1.56 | 99.12 | 2.55 | 100.49 | 3.09 | 96.39 | 1.38 | 102.62 | 0.76 | |
石蛙 | 1 | 87.83 | 7.21 | 83.83 | 3.60 | 98.33 | 9.54 | 98.17 | 2.06 | 104.33 | 2.73 | 100.00 | 3.50 |
Quasipaa | 5 | 93.30 | 1.04 | 82.60 | 3.80 | 96.00 | 2.86 | 97.97 | 3.37 | 88.13 | 1.54 | 84.67 | 1.85 |
spinosa | 10 | 92.53 | 1.45 | 104.10 | 1.21 | 107.37 | 2.32 | 95.93 | 1.29 | 82.20 | 1.08 | 87.63 | 2.75 |
100 | 96.04 | 1.95 | 90.35 | 1.00 | 103.43 | 2.14 | 101.88 | 1.11 | 101.42 | 0.79 | 114.65 | 1.47 |
表9 六种喹诺酮类抗生素回收率和相对标准偏差(n=5)
Table 9 Recovery rate and relative standard deviation of 6 quinolone antibiotics(n=5) %
水产品 Aquatic products | 加标量 Addition amount/ (μg·kg-1) | 氧氟沙星OLF | 洛美沙星LOM | 诺氟沙星NOR | 培氟沙星PEF | 恩诺沙星ENR | 环丙沙星CIP | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | 回收率 Recovery rate | 偏差 RSD | ||
大黄鱼 | 1 | 89.17 | 3.38 | 94.67 | 5.08 | 110.00 | 7.32 | 112.00 | 6.76 | 104.50 | 4.56 | 88.33 | 5.58 |
Larimichthys | 5 | 84.77 | 2.55 | 94.37 | 6.01 | 93.73 | 2.02 | 86.10 | 1.57 | 95.50 | 4.77 | 89.83 | 1.65 |
crocea | 10 | 84.73 | 9.13 | 97.47 | 9.47 | 100.27 | 5.58 | 93.97 | 3.18 | 92.23 | 1.07 | 83.17 | 2.75 |
100 | 94.02 | 1.47 | 90.67 | 2.25 | 94.24 | 4.08 | 99.59 | 0.20 | 96.71 | 2.75 | 106.39 | 2.22 | |
中华鳖 | 1 | 117.00 | 4.27 | 113.50 | 6.06 | 101.17 | 4.95 | 111.00 | 2.25 | 118.00 | 1.12 | 95.33 | 7.68 |
Trionyx | 5 | 90.83 | 3.26 | 102.30 | 5.65 | 104.63 | 3.45 | 92.97 | 3.25 | 91.57 | 3.12 | 90.57 | 2.07 |
sinensis | 10 | 92.90 | 1.56 | 105.43 | 2.35 | 105.93 | 2.10 | 95.30 | 2.38 | 90.50 | 0.92 | 93.37 | 0.90 |
100 | 93.91 | 0.87 | 91.03 | 1.56 | 99.12 | 2.55 | 100.49 | 3.09 | 96.39 | 1.38 | 102.62 | 0.76 | |
石蛙 | 1 | 87.83 | 7.21 | 83.83 | 3.60 | 98.33 | 9.54 | 98.17 | 2.06 | 104.33 | 2.73 | 100.00 | 3.50 |
Quasipaa | 5 | 93.30 | 1.04 | 82.60 | 3.80 | 96.00 | 2.86 | 97.97 | 3.37 | 88.13 | 1.54 | 84.67 | 1.85 |
spinosa | 10 | 92.53 | 1.45 | 104.10 | 1.21 | 107.37 | 2.32 | 95.93 | 1.29 | 82.20 | 1.08 | 87.63 | 2.75 |
100 | 96.04 | 1.95 | 90.35 | 1.00 | 103.43 | 2.14 | 101.88 | 1.11 | 101.42 | 0.79 | 114.65 | 1.47 |
[1] | 吴甘林, 邓玉婷, 姜兰, 等. 水产动物源细菌质粒介导的喹诺酮类耐药研究概况[J]. 水产科学, 2020, 39(4): 631-638. |
WU G L, DENG Y T, JIANG L, et al. Overview of plasmid media quinolone resistance in bacteria from aquatic animals[J]. Fisheries Science, 2020, 39(4): 631-638. (in Chinese with English abstract) | |
[2] | SONG C, ZHANG C, FAN L M, et al. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China[J]. Chemosphere, 2016, 161: 127-135. |
[3] | TANG J, SHI T Z, WU X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: seasonal variation, potential source and risk assessment[J]. Chemosphere, 2015, 122: 154-161. |
[4] | WANG Y, LI Z Z, PEI Y F, et al. Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of soybean allergen β-conglycinin[J]. Food Analytical Methods, 2017, 10(7): 2429-2435. |
[5] | BUSH N G, DIEZ-SANTOS I, ABBOTT L R, et al. Quinolones: mechanism, lethality and their contributions to antibiotic resistance[J]. Molecules, 2020, 25(23): 5662. |
[6] | ZHANG L L, QIN S, SHEN L N, et al. Bioaccumulation, trophic transfer, and human health risk of quinolones antibiotics in the benthic food web from a macrophyte-dominated shallow lake, North China[J]. Science of the Total Environment, 2020, 712: 136557. |
[7] | TAYLOR P J. Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry[J]. Clinical Biochemistry, 2005, 38(4): 328-334. |
[8] | 加列西·马那甫, 贾娜尔·吐尔逊, 万越, 等. 响应面法在仪器分析实验教学中的应用: 以响应面法优化HPLC测定饮料苯甲酸的条件为例[J]. 大学化学, 2021, 36(8): 141-145. |
JIALIEXI·MANAFU, JANAER·TUERXUN, WAN Y, et al. Application of response surface method in the teaching of instrumental analysis experiment: taking the optimization of HPLC conditions for determination of benzoic acid in beverages as an example[J]. University Chemistry, 2021, 36(8): 141-145. (in Chinese) | |
[9] | 罗辉泰, 谢梦婷, 黄晓兰, 等. 分散固相萃取-高效液相色谱-串联质谱法同时测定畜禽肉中63种兽药残留[J]. 色谱, 2015, 33(4): 354-362. |
LUO H T, XIE M T, HUANG X L, et al. Multiresidue analysis of 63 veterinary drugs in meat by dispersive solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography, 2015, 33(4): 354-362. (in Chinese with English abstract) | |
[10] | 颜春荣, 张晓强, 林慧, 等. 超高压液相色谱-串联质谱法(LC-MS-MS)测定鱼肉中磺胺类兽药残留的基质效应[J]. 肉类研究, 2013, 27(10): 17-20. |
YAN C R, ZHANG X Q, LIN H, et al. Matrix effects in the determination of sulfonamide residues in fish meats by ultra performance lliquid chromatography-tandem mass spectrometry (LC-MS-MS)[J]. Meat Research, 2013, 27(10): 17-20. (in Chinese with English abstract) | |
[11] | 夏宝林, 严秋钫, 杨娜, 等. 增强型除脂固相萃取技术结合超高效液相色谱-串联质谱法测定动物源性食品中五氯酚残留量[J]. 食品安全质量检测学报, 2019, 10(14): 4698-4705. |
XIA B L, YAN Q F, YANG N, et al. Determination of pentachlorophenol residue in animal-origin foods by EMR-Lipid-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety & Quality, 2019, 10(14): 4698-4705. (in Chinese with English abstract) | |
[12] | 王立琦, 贺利民, 曾振灵, 等. 液相色谱-串联质谱检测兽药残留中的基质效应研究进展[J]. 质谱学报, 2011, 32(6): 321-332. |
WANG L Q, HE L M, ZENG Z L, et al. Progress in matrix effect of veterinary drug residues analysis by high-performance liquid chromatography tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2011, 32(6): 321-332. (in Chinese with English abstract) | |
[13] | 贺江, 李晓月, 仇玉洁, 等. 固相萃取: 超高效液相色谱法测定水产品中6种氟喹诺酮类药物残留[J]. 食品与机械, 2018, 34(5): 77-81. |
HE J, LI X Y, QIU Y J, et al. Determination of 6 fluoroquinolones residues in aquatic products by solid phase extraction and ultra performance lquid chromatography[J]. Food & Machinery, 2018, 34(5): 77-81. (in Chinese with English abstract) | |
[14] | 王杰, 裴斐, 李彭, 等. 不同前处理方法对猪组织中喹诺酮类兽药残留检测效果对比[J]. 食品科学, 2018, 39(18): 309-314. |
WANG J, PEI F, LI P, et al. Comparison of different sample pretreatments for the analysis of quinolone residues in porcine tissues[J]. Food Science, 2018, 39(18): 309-314. (in Chinese with English abstract) |
[1] | 裘丞军, 侯轩, 陈凯, 吴望君, 周炜, 段友刚. 超高效液相色谱-串联质谱法同时测定畜禽排泄物中15种喹诺酮类药物[J]. 浙江农业学报, 2024, 36(7): 1519-1529. |
[2] | 吕敬, 吴治勇, 郭晓农, 冯玉兰, 卢建雄, 柴薇薇. 基于响应面法的乳酸菌发酵藜麦秸秆工艺条件优化[J]. 浙江农业学报, 2022, 34(9): 1866-1876. |
[3] | 贾洋洋, 聂枞宁, 罗兴禹, 杨凯辉, 何春雷. 外源酶辅助发酵加工藏茶的工艺研究[J]. 浙江农业学报, 2021, 33(9): 1720-1729. |
[4] | 杨颖, 施迎春, 邢建荣, 刘哲, 郑美瑜, 陆胜民. 葡萄柚精油“除萜赋香”工艺的优化研究[J]. 浙江农业学报, 2021, 33(11): 2128-2136. |
[5] | 夏魏, 李祖光, 杨华, 吉小凤, 汪建妹, 钱鸣蓉. 鸡蛋磺胺间甲氧嘧啶残留研究[J]. 浙江农业学报, 2019, 31(1): 155-160. |
[6] | 柳爱春, 刘超, 张乐, 童朝明, 李锋, 赵芸. 免疫胶体金法快速检测水产品中喹诺酮类药物[J]. 浙江农业学报, 2018, 30(2): 290-297. |
[7] | 何祥祥, 杨华, 戴宝玲, 夏效东, 肖英平. 冷鲜鸡污染微生物磺胺类和喹诺酮类耐药基因分析[J]. 浙江农业学报, 2017, 29(4): 555-559. |
[8] | 柳爱春1,刘超1,赵芸1,陈效绘2. 喹诺酮类药物在麻鸡体内的转化和分布规律[J]. 浙江农业学报, 2016, 28(5): 736-. |
[9] | 陈新峰1,2,张治国2,王君虹2,周利亘2,*. 响应面法优化微波固相合成毛虾肽螯合钙工艺[J]. 浙江农业学报, 2015, 27(8): 1473-. |
[10] | 应晨,阮川芬,汤逸飞,章华伟*. 内生产酶溶杆菌R\|2\|1发酵工艺优化[J]. 浙江农业学报, 2015, 27(2): 220-. |
[11] | 王玲丽,滕红梅*,弓苗苗. 响应面分析法优化超声提取连翘花黄色素工艺研究[J]. 浙江农业学报, 2014, 26(4): 961-. |
[12] | 王楠;*;王伟;周虹;唐昌权. 甲鱼蛋白抗氧化肽的中性蛋白酶酶解条件优化[J]. , 2014, 26(2): 0-303308. |
[13] | 孙 宏;汤江武;葛向阳;*;. 响应面法优化菜粕固态发酵工艺的研究[J]. , 2009, 21(3): 0-306. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 147
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 41
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||