[1] |
LI S Y, LEUNG J C S, LU Z H, et al. Quantity and variety of fruit and vegetable intake with changes in measures of adiposity among community-dwelling Chinese older adults[J]. Nutrients, 2023, 15(19): 4096.
|
[2] |
BERNAL Á R R, REYNOSO C M, LONDOÑO V A G, et al. Alternaria toxins in Argentinean wheat, bran, and flour[J]. Food Additives & Contaminants: Part B, 2019, 12(1): 24-30.
|
[3] |
AGRIOPOULOU S, STAMATELOPOULOU E, VARZAKAS T. Advances in occurrence, importance, and mycotoxin control strategies: prevention and detoxification in foods[J]. Foods, 2020, 9(2): 137.
|
[4] |
WALRAVENS J, MIKULA H, RYCHLIK M, et al. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs[J]. Journal of Chromatography A, 2014, 1372C: 91-101.
|
[5] |
MOAKE M M, PADILLA-ZAKOUR O I, WOROBO R W. Comprehensive review of patulin control methods in foods[J]. Comprehensive Reviews in Food Science and Food Safety, 2005, 4(1): 8-21.
|
[6] |
ZHENG X F, WEI W N, ZHOU W Y, et al. Prevention and detoxification of patulin in apple and its products: a review[J]. Food Research International, 2021, 140: 110034.
|
[7] |
LI N, CUI R, ZHANG F, et al. Current situation and future challenges of patulin reduction: a review[J]. Food Control, 2022, 138: 108996.
|
[8] |
XIAO Y J, LIU B J, WANG Z J, et al. Effective degradation of the mycotoxin patulin in pear juice by porcine pancreatic lipase[J]. Food and Chemical Toxicology, 2019, 133: 110769.
|
[9] |
SHEN Y, ZHAO S J, ZHAO X D, et al. In vitro adsorption mechanism of acrylamide by lactic acid bacteria[J]. LWT, 2019, 100: 119-125.
|
[10] |
魏皖宁. 干酪乳杆菌YZU01降解展青霉素的机制及其应用研究[D]. 扬州: 扬州大学, 2022.
|
|
WEI W N. Mechanism of degradation of patulin by Lactobacillus casei YZU01 and its application[D]. Yangzhou: Yangzhou University, 2022. (in Chinese with English abstract)
|
[11] |
ZHENG X F, YANG Q Y, ZHANG H Y, et al. The possible mechanisms involved in degradation of patulin by Pichia caribbica[J]. Toxins, 2016, 8(10): 289.
|
[12] |
塔娜. 酸马奶中乳酸菌的分离鉴定及其安全性评价试验[D]. 呼和浩特: 内蒙古农业大学, 2022.
|
|
TA N. Isolation and identification and safety evaluation of lactic acid bacteria from koumiss[D]. Hohhot: Inner Mongolia Agricultural University, 2022. (in Chinese with English abstract)
|
[13] |
龚雪. 乳酸菌降低展青霉素毒害作用的研究[D]. 无锡: 江南大学, 2015.
|
|
GONG X. Effects of lactic acid bacteria on reducing patulin toxicity[D]. Wuxi: Jiangnan University, 2015. (in Chinese with English abstract)
|
[14] |
魏朝治. 植物乳杆菌CCFM1287转化展青霉素的机制解析及缓解毒性的功能评价[D]. 无锡: 江南大学, 2022.
|
|
WEI C Z. Mechanism of the biotransformation of patulin by lactobacillus plantarum CCFM1287 and evaluation of its function in alleviating toxicity[D]. Wuxi: Jiangnan University, 2022. (in Chinese with English abstract)
|
[15] |
高振鹏, 刘瑞, 张德举, 等. 超声波降解苹果汁中展青霉素动力学研究[J]. 农业机械学报, 2015, 46(11): 230-235.
|
|
GAO Z P, LIU R, ZHANG D J, et al. Kinetics study of ultrasonic degradation of patulin in apple juice[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 230-235. (in Chinese with English abstract)
|
[16] |
何倩. Ralstonia sp. SL312脂肪酶降解展青霉素方法研究[D]. 杨凌: 西北农林科技大学, 2022.
|
|
HE Q. Studying on the enzymatic degradation of patulin by lipase from Ralstonia sp.SL312[D]. Yangling: Northwest A & F University, 2022. (in Chinese with English abstract)
|
[17] |
WANG L, YUE T L, YUAN Y H, et al. A new insight into the adsorption mechanism of patulin by the heat-inactive lactic acid bacteria cells[J]. Food Control, 2015, 50: 104-110.
|
[18] |
ZOGHI A, KHOSRAVI-DARANI K, SOHRABVANDI S, et al. Effect of probiotics on patulin removal from synbiotic apple juice[J]. Journal of the Science of Food and Agriculture, 2017, 97(8): 2601-2609.
|
[19] |
ZHENG X F, WEI W N, RAO S Q, et al. Degradation of patulin in fruit juice by a lactic acid bacteria strain Lactobacillus casei YZU01[J]. Food Control, 2020, 112: 107147.
|
[20] |
HATAB S, YUE T, MOHAMAD O. Removal of patulin from apple juice using inactivated lactic acid bacteria[J]. Journal of Applied Microbiology, 2012, 112(5): 892-899.
|
[21] |
WEI C Z, ZHANG C, GAO Y H, et al. Insights into the metabolic response of Lactiplantibacillus plantarum CCFM1287 upon patulin exposure[J]. International Journal of Molecular Sciences, 2022, 23(19): 11652.
|
[22] |
RICELLI A, BARUZZI F, SOLFRIZZO M, et al. Biotransformation of patulin by Gluconobacter oxydans[J]. Applied and Environmental Microbiology, 2007, 73(3): 785-792.
|
[23] |
HAWAR S, VEVERS W, KARIEB S, et al. Biotransformation of patulin to hydroascladiol by Lactobacillus plantarum[J]. Food Control, 2013, 34(2): 502-508.
|