[1] |
VERLINDEN H. Dopamine signalling in locusts and other insects[J]. Insect Biochemistry and Molecular Biology, 2018, 97: 40-52.
|
[2] |
ZHANG H H, ZHANG Q W, IDREES A, et al. Tyrosine hydroxylase is crucial for pupal pigmentation in Zeugodacus tau(Walker) (Diptera: Tephritidae)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2019, 231: 11-19.
|
[3] |
LIVINGSTONE M S, TEMPEL B L. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila[J]. Nature, 1983, 303(5912): 67-70.
|
[4] |
WEISBERG E P, O’DONNELL J M. Purification and characterization of GTP cyclohydrolase I from Drosophila melanogaster[J]. Journal of Biological Chemistry, 1986, 261(3): 1453-1458.
|
[5] |
KATO T, SAWADA H, YAMAMOTO T, et al. Pigment pattern formation in the quail mutant of the silkworm, Bombyx mori: parallel increase of pteridine biosynthesis and pigmentation of melanin and ommochromes[J]. Pigment Cell Research, 2006, 19(4): 337-345.
|
[6] |
NIE H Y, LIU C, CHENG T C, et al. Transcriptome analysis of integument differentially expressed genes in the pigment mutant (quail) during molting of silkworm, Bombyx mori[J]. PLoS One, 2014, 9(4): e94185.
|
[7] |
HAYAKAWA Y, SAWADA M, SEKI M, et al. Involvement of laccase2 and yellow-e genes in antifungal host defense of the model beetle, Tribolium castaneum[J]. Journal of Invertebrate Pathology, 2018, 151: 41-49.
|
[8] |
DU M H, YAN Z W, HAO Y J, et al. Suppression of laccase 2 severely impairs cuticle tanning and pathogen resistance during the pupal metamorphosis of Anopheles sinensis(Diptera: Culicidae)[J]. Parasites & Vectors, 2017, 10(1): 171.
|
[9] |
CHEN E H, HOU Q L, WEI D D, et al. Tyrosine hydroxylase coordinates larval-pupal tanning and immunity in oriental fruit fly (Bactrocera dorsalis)[J]. Pest Management Science, 2018, 74(3): 569-578.
|
[10] |
ZHANG Y J, ZHENG S H, GENG Y Y, et al. microRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1[J]. PLoS One, 2015, 10(3): e0122674.
|
[11] |
LIU S H, YANG B J, WANG A Y, et al. RNA interference of tyrosine hydroxylase caused rapid mortality by impairing cuticle formation in Nilaparvata lugens(Hemiptera: Delphacidae)[J]. Pest Management Science, 2020, 76(6): 2225-2232.
|
[12] |
O’DONNELL J M, RANGANAYAKULU G, CHEN X, et al. Drosophila GTP cyclohyrodrolase: multiple isoform products of a single gene derive from alternate transcripts that are developmentally regulated and functionally specific[M]// AYLING J E, NAIR M G, BAUGH C M. Chemistry and Biology of Pteridines and Folates. Boston, MA: Springer US, 1993: 147-155.
|
[13] |
YUASA M, KIUCHI T, BANNO Y, et al. Identification of the silkworm quail gene reveals a crucial role of a receptor guanylyl cyclase in larval pigmentation[J]. Insect Biochemistry and Molecular Biology, 2016, 68: 33-40.
|
[14] |
SAWADA H, NAKAGOSHI M, REINHARDT R K, et al. Hormonal control of GTP cyclohydrolase I gene expression and enzyme activity during color pattern development in wings of Precis coenia[J]. Insect Biochemistry and Molecular Biology, 2002, 32(6): 609-615.
|
[15] |
FUTAHASHI R, FUJIWARA H. Expression of one isoform of GTP cyclohydrolase I coincides with the larval black markings of the swallowtail butterfly, Papilio xuthus[J]. Insect Biochemistry and Molecular Biology, 2006, 36(1): 63-70.
|
[16] |
ZE L J, XU P, WU J J, et al. Disruption of tetrahydrobiopterin (BH4) biosynthesis pathway affects cuticle pigmentation in Henosepilachna vigintioctopunctata[J]. Journal of Insect Physiology, 2023, 144: 104457.
|
[17] |
XUE J, ZHOU X, ZHANG C X, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation[J]. Genome Biology, 2014, 15(12): 521.
|
[18] |
任宗杰, 郭永旺, 秦萌, 等. 2022年全国农业有害生物抗药性监测评估与治理对策[J]. 中国植保导刊, 2023, 43(3): 62-71.
|
|
REN Z J, GUO Y W, QIN M, et al. Monitoring, evaluation and control countermeasures of agricultural pest resistance in China in 2022[J]. China Plant Protection, 2023, 43(3): 62-71. (in Chinese with English abstract)
|
[19] |
LIU S H, LUO J, LIU R, et al. Identification of Nilaparvata lugens and its two sibling species (N. bakeri and N. muiri) by direct multiplex PCR[J]. Journal of Economic Entomology, 2018, 111(6): 2869-2875.
|
[20] |
LIU S H, DING Z P, ZHANG C W, et al. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens[J]. Insect Biochemistry and Molecular Biology, 2010, 40(9): 666-671.
|
[21] |
FU Q, ZHANG Z T, HU C, et al. A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens(Stål)(Homoptera: Delphacidae)[J]. Applied Entomology and Zoology, 2001, 36(1): 111-116.
|
[22] |
王栋, 陈源泉, 李道亮, 等. 农业领域若干颠覆性技术初探[J]. 中国工程科学, 2018, 20(6): 57-63.
|
|
WANG D, CHEN Y Q, LI D L, et al. Foresight of disruptive technologies in agricultural engineering[J]. Strategic Study of CAE, 2018, 20(6): 57-63. (in Chinese with English abstract)
|
[23] |
于慧. 利用RNAi技术抑制褐飞虱蔗糖酶基因和蔗糖转运子基因的研究[D]. 杭州: 浙江大学, 2013.
|
|
YU H. Suppression of sucrase gene and sugar transporter gene of the brown planthopper by RNA interference[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
|
[24] |
张凤珍. 利用RNAi技术控制褐飞虱的研究[D]. 杭州: 浙江大学, 2013.
|
|
ZHANG F Z. Control of Nilaparvata lugens by RNAi[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
|
[25] |
禹海鑫. 褐飞虱致害性变异相关机理研究[D]. 杭州: 浙江大学, 2013.
|
|
YU H X. Study on the mechanism responsible for the virulence variation of the rice brown planthopper, Nilaparvata lugens (Stål)[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
|
[26] |
纪锐. 唾液蛋白NI1860在褐飞虱致害性变异中的作用与机理研究[D]. 杭州: 浙江大学, 2013.
|
|
JI R. The role of a salivary protein Nl1860 in the change in virulence of the rice brown planthopper, Nilaparvata lugens, and its mechanisms[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
|
[27] |
KIM H, KIM K, KIM J, et al. Mutagenesis by imprecise excision of the piggyBac transposon in Drosophila melanogaster[J]. Biochemical and Biophysical Research Communications, 2012, 417(1): 335-339.
|
[28] |
FUJII T, ABE H, KAWAMOTO M, et al. Albino (al) is a tetrahydrobiopterin (BH4)-deficient mutant of the silkworm Bombyx mori[J]. Insect Biochemistry and Molecular Biology, 2013, 43(7): 594-600.
|
[29] |
TONG X L, LIANG P F, WU S Y, et al. Disruption of PTPS gene causing pale body color and lethal phenotype in the silkworm, Bombyx mori[J]. International Journal of Molecular Sciences, 2018, 19(4): 1024.
|