浙江农业学报 ›› 2025, Vol. 37 ›› Issue (9): 1981-1990.DOI: 10.3969/j.issn.1004-1524.20241096

• 生物系统工程 • 上一篇    下一篇

塑料大棚的风振响应与风振系数

王聪(), 芦佳蕊, 林玉飞, 潘兴家, 王杰, 朱隆静()   

  1. 温州科技职业学院(温州市农业科学研究院), 温州农业具身智能体重点实验室, 浙江 温州 325006
  • 收稿日期:2024-12-20 出版日期:2025-09-25 发布日期:2025-10-15
  • 作者简介:朱隆静,E-mail:zhulongjing@wzvcst.edu.cn
    王聪(1995—),男,河南南阳人,博士,助理研究员,研究方向为农业设施结构与环境工程。E-mail:wangcong@wzvcst.edu.cn
  • 通讯作者: 朱隆静
  • 基金资助:
    浙江省农业重大技术协同推广计划项目(2023ZDXT05-03)

Wind induced responses and wind vibration coefficients of plastic greenhouses

WANG Cong(), LU Jiarui, LIN Yufei, PAN Xingjia, WANG Jie, ZHU Longjing()   

  1. Wenzhou Key Laboratory of AI Agents for Agriculture, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou 325006, Zhejiang, China
  • Received:2024-12-20 Online:2025-09-25 Published:2025-10-15
  • Contact: ZHU Longjing

摘要: 为探明塑料大棚在瞬时风荷载作用下的动力失效机理,本研究对8 m跨度的塑料大棚进行风振响应分析,讨论了塑料大棚脊高和肩高对节点位移风振系数的影响,并提出便于工程应用的整体位移风振系数建议值。结果表明:风荷载作用下,塑料大棚位移呈双峰曲线分布,第1个位移峰值出现在距离迎风面支座1.0 m处,第2个位移峰值出现在距离迎风面支座6.3 m处,瞬时风荷载作用下的最大位移为平均风荷载作用下的2.5倍左右;最大等效应力发生在迎风面支座处,瞬时风荷载作用下的最大等效应力为平均风荷载作用下的2.1倍左右;塑料大棚脊高对节点位移风振系数影响较小,在保持肩高不变的情况下,脊高从3.4 m增加到3.8 m,节点位移风振系数变化幅度约5%;当脊高不变时,节点位移风振系数随肩高增加而减小;对于8 m跨度,肩高1.8~2.0 m、脊高3.4~3.8 m的塑料大棚,其整体位移风振系数变化范围为2.23~2.43。研究结果为塑料大棚结构抗风设计提供了理论依据。

关键词: 塑料大棚, 荷载, 动力分析, 风振响应, 风振系数

Abstract:

To investigate the dynamic failure mechanism of plastic greenhouses under instantaneous wind loads, the wind-induced response analysis of an 8 m-span plastic greenhouse was conducted, the influence of ridge height and shoulder height on node displacement wind vibration coefficient was discussed. To facilitate engineering applications, recommended values for global displacement wind vibration coefficient were provided. The results showed that the displacement of the plastic greenhouse under wind loads exhibited a “double-peak” curve distribution. The first displacement peak occurred at 1.0 m away from the windward end, and the second displacement peak occurred at 6.3 m away from the windward end. The maximum displacement under instantaneous wind loads was approximately 2.5 times that under mean wind loads. The maximum equivalent stress of the plastic greenhouse occurred at the windward end. The maximum equivalent stress under instantaneous wind loads was about 2.1 times that under mean wind loads. The ridge height of the plastic greenhouse had little influence on the nodal displacement wind vibration coefficients. With the shoulder height unchanged and the ridge height increasing from 3.4 m to 3.8 m, the nodal displacement wind vibration coefficient varied about 5%. When the ridge height was constant, the nodal displacement wind vibration coefficient decreased with the increase of shoulder height. For plastic greenhouses with a span of 8 m, shoulder height range of 1.8 m to 2.0 m, and ridge height range of 3.4 m to 3.8 m, the global displacement wind vibration coefficient varied from 2.23 to 2.43. The results could provide a theoretical basis for the wind-resistant design of plastic greenhouse structures.

Key words: plastic greenhouse, load, dynamic analysis, wind induced response, wind vibration coefficient

中图分类号: