[1] 马力, 陈永忠, 钟海雁, 等. 油茶籽储藏过程中品质因子的变化[J]. 江苏农业科学, 2017, 45(14): 164-166.
MA L, CHEN Y Z, ZHONG H Y, et al.Changes of quality factors in the storage of Camellia oleifera seeds[J]. Jiangsu Agricultural Sciences, 2017, 45(14): 164-166.(in Chinese)
[2] 石晓丽. 油茶籽及油茶籽油贮藏过程中的品质变化研究[D]. 杭州: 浙江农林大学, 2014.
SHI X L.Study on quality change of Camellia oleifera seeds and Camellia oleifera seed oil during storage[D]. Hangzhou: Zhejiang A & F University, 2014. (in Chinese with English abstract)
[3] 蒋淑儒. 不同贮藏条件对油茶籽品质的影响[D]. 长沙: 湖南农业大学, 2014.
JIANG S R.Effect of different storage conditions on the quality of Camellia oleifera seeds[D]. Changsha: Hunan Agricultural University, 2014.(in Chinese with English abstract)
[4] 谢凯, 蒋蘋, 罗亚辉. 稻瘟病胁迫下水稻叶片叶绿素含量与光谱特征参数的相关性研究[J]. 中国农学通报, 2017, 33(17): 117-122.
XIE K, JIANG P, LUO Y H.Correlation between chlorophyll content and spectral characteristics of rice leaves under rice blast[J]. Chinese Agricultural Science Bulletin, 2017, 33(17): 117-122.(in Chinese with English abstract)
[5] 陈香, 李民赞, 孙红, 等. 基于透射光谱的玉米叶片水分含量快速检测[J]. 农业工程学报, 2017, 33(增刊1): 137-142.
CHEN X, LI M Z, SUN H, et al.Rapid determination of moisture content in maize leaf based on transmission spectrum[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(Supp. 1): 137-142.(in Chinese with English abstract)
[6] 沈飞, 黄怡, 周曰春, 等. 基于光谱和图像信息融合的玉米霉变程度在线检测[J]. 食品科学, 2019, 40(16): 274-280.
SHEN F, HUANG Y, ZHOU Y C, et al.On-line detection of mildew degree of maize based on spectral and image information fusion[J]. Food Science, 2019, 40(16): 274-280.(in Chinese with English abstract)
[7] 李瑞, 傅隆生. 基于高光谱图像的蓝莓糖度和硬度无损测量[J]. 农业工程学报, 2017, 33(增刊1): 362-366.
LI R, FU L S.Nondestructive measurement of firmness and sugar content of blueberries based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(Supp. 1): 362-366.(in Chinese with English abstract)
[8] 章林忠, 丁玲玲, 蔡雪珍, 等. 基于近红外高光谱图像技术的栗果品质无损检测[J]. 安徽农业大学学报, 2019, 46(1):160-166.
ZHANG L Z, DING L L, CAI X Z, et al.Non-destructive detection of Chinese chestnut (Castanea mollissima) nut qualities based on near-infrared hyperspectral imaging techniques[J]. Journal of Anhui Agricultural University, 2019, 46(1): 160-166. (in Chinese with English abstract)
[9] 汤修映, 牛力钊, 徐杨, 等. 基于可见/近红外光谱技术的牛肉含水率无损检测[J]. 农业工程学报, 2013, 29(11): 248-254.
TANG X Y, NIU L Z, XU Y, et al.Nondestructive determination of water content in beef using visible/near-infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(11): 248-254. (in Chinese with English abstract)
[10] 杨静怡, 陶兴月, 夏玉芳, 等. 不同贮藏条件下核桃种子的红外光谱特征分析[J]. 果树学报, 2015, 32(5): 950-958.
YANG J Y, TAO X Y, XIA Y F, et al.Infrared spectra of walnut seed under different storage conditions[J]. Journal of Fruit Science, 2015, 32(5): 950-958. (in Chinese with English abstract)
[11] KALININ A V, KRASHENINNIKOV V N, SVIRIDOV A P, et al.Near infrared spectrometry of clinically significant fatty acids using multicomponent regression[J]. Journal of Applied Spectroscopy, 2016, 83(5): 811-819.
[12] 原姣姣. 近红外光谱法对茶油化学成分及快速鉴伪的研究[J]. 生物质化学工程, 2013, 47(2): 64.
YUAN J J.Analysis of chemical content and adulteration of Camellia oleifera oil by near infrared spectroscopy[J]. Biomass Chemical Engineering, 2013, 47(2): 64. (in Chinese)
[13] 廖敦军, 蒋蘋, 罗亚辉, 等. 油茶籽脂肪酸成分含量与高光谱反射率的相关性[J]. 湖南农业大学学报(自然科学版), 2013, 39(4): 445-448.
LIAO D J, JIANG P, LUO Y H, et al.Correlation between Camellia seed aliphatic acid composition and hyperspectral reflectance[J]. Journal of Hunan Agricultural University (Natural Sciences), 2013, 39(4): 445-448.(in Chinese with English abstract)
[14] 莫欣欣, 周莹, 孙通, 等. 可见/近红外光谱的油茶籽油三元体系掺假检测模型优化[J]. 光谱学与光谱分析, 2016, 36(12): 3881-3884.
MO X X, ZHOU Y, SUN T, et al.Model optimization of ternary system adulteration detection in Camellia oil based on visible/near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3881-3884. (in Chinese with English abstract)
[15] 俞雅茹. 芝麻油和油茶籽油掺伪近红外光谱法检测研究[D]. 武汉: 武汉轻工大学, 2018.
YU Y R.Study on detection of adulterated sesame oil and tea seed oil by near infrared spectroscopy[D]. Wuhan: Wuhan Polytechnic University, 2018. (in Chinese with English abstract)
[16] 陈欢, 罗昭标, 冯小艳, 等. 油茶籽油脂肪酸含量、分析检测方法及其分子生物学研究进展[J]. 食品工业科技, 2019, 40(10): 345-349.
CHEN H, LUO Z B, FENG X Y, et al.Research progress on fatty acid contents, analytical methods and molecular biology of Camellia oleifera seed oil[J]. Science and Technology of Food Industry, 2019, 40(10): 345-349. (in Chinese with English abstract)
[17] 敖继红, 唐文洁, 李思臻. 食品安全中国国家标准GB 5009.3—2016《食品安全国家标准食品中水分的测定》与蒙古MNS 6477:2014《肉与肉制品水分测定方法》比对分析报告[J].中国标准化, 2019 (1): 112-117.
AO J H, TANG W J, LI S Z.Comparison and analysis report of the Chinese national standard, GB 5009.3-2016, National Food Safety Standard Determination of Moisture in Food Safety Standard Food and Mongolian national standard, MNS 6477:2014, Method for Determination of Moisture in Meat and Meat Products[J]. China Standardization, 2019 (1): 112-117. (in Chinese with English abstract)
[18] 刘洁, 李小昱, 李培武, 等. 基于近红外光谱的板栗水分检测方法[J]. 农业工程学报, 2010, 26(2): 338-341.
LIU J, LI X Y, LI P W, et al.Determination of moisture in chestnuts using near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(2): 338-341. (in Chinese with English abstract)
[19] 傅谊, 张拥军, 陈华才, 等. 基于偏最小二乘法的板栗近红外光谱分析模型的建立[J]. 食品科技, 2012, 37(5): 42-45.
FU Y, ZHANG Y J, CHEN H C, et al.Establishment of NIR models for components determination in fresh chestnut[J]. Food Science and Technology, 2012, 37(5): 42-45. (in Chinese with English abstract)
[20] 高斌, 赵鹏飞, 卢昱欣, 等. 基于BP神经网络的血液荧光光谱识别分类研究[J]. 光谱学与光谱分析, 2018, 38(10): 3136-3143.
GAO B, ZHAO P F, LU Y X, et al.Study on recognition and clasaification of blood fluorescence spectrum with BP neural network[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3136-3143. (in Chinese with English abstract)
[21] 毛鑫昕, 毛建清, 王东哲. 基于RBF神经网络的轮胎滚动阻力建模研究[J]. 橡胶工业, 2019, 66(10): 739-743.
MAO X X, MAO J Q, WANG D Z.Research on tire rolling resistance modeling based on RBF neural network[J]. China Rubber Industry, 2019, 66(10): 739-743. (in Chinese with English abstract)
[22] 孙世鹏, 彭俊, 李瑞, 等. 基于近红外高光谱图像的冬枣损伤早期检测[J]. 食品科学, 2017, 38(2): 301-305.
SUN S P, PENG J, LI R, et al.Early detection of mechanical damage in Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao) using NIR hyperspectral images[J]. Food Science, 2017, 38(2): 301-305. (in Chinese with English abstract)
[23] 王欣. 近红外分析中光谱预处理方法的研究与应用进展[J]. 科技资讯, 2013, 11(15): 2.
WANG X.Research and application progress of spectral preprocessing in near infrared analysis[J]. Science & Technology Information, 2013, 11(15): 2. (in Chinese)
[24] 展慧, 李小昱, 周竹, 等. 基于近红外光谱和机器视觉融合技术的板栗缺陷检测[J]. 农业工程学报, 2011, 27(2): 345-349.
ZHAN H, LI X Y, ZHOU Z, et al.Detection of chestnut defect based on data fusion of near-infrared spectroscopy and machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(2): 345-349. (in Chinese with English abstract)
[25] 周竹, 李小昱, 李培武, 等. 基于GA-LSSVM和近红外傅里叶变换的霉变板栗识别[J]. 农业工程学报, 2011, 27(3): 331-335.
ZHOU Z, LI X Y, LI P W, et al.Near-infrared spectral detection of moldy chestnut based on GA-LSSVM and FFT[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 331-335. (in Chinese with English abstract)
[26] 田有文, 程怡, 王小奇, 等. 基于高光谱成像的苹果虫伤缺陷与果梗/花萼识别方法[J]. 农业工程学报, 2015, 31(4): 325-331.
TIAN Y W, CHENG Y, WANG X Q, et al.Recognition method of insect damage and stem/calyx on apple based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(4): 325-331. (in Chinese with English abstract)
[27] 杨玉清, 张甜甜, 李军会, 等. 近红外高光谱的活体玉米叶片水分成像研究[J]. 光谱学与光谱分析, 2018, 38(12): 3743-3747.
YANG Y Q, ZHANG T T, LI J H, et al.Water imaging of living corn leaves based on near-infrared hysperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3743-3747. (in Chinese with English abstract)
[28] 吴龙国, 王松磊, 何建国. 基于高光谱技术的土壤水分无损检测[J]. 光谱学与光谱分析, 2018, 38(8): 2563-2570.
WU L G, WANG S L, HE J G.Study on soil moisture mechanism and establishment of model based on hyperspectral imaging technique[J]. Spectroscopy and Spectral Analysis, 2018, 38(8): 2563-2570. (in Chinese with English abstract)
[29] 李跑, 申汝佳, 李尚科, 等. 一种基于近红外光谱与化学计量学的绿茶快速无损鉴别方法[J]. 光谱学与光谱分析, 2019, 39(8): 2584-2589.
LI P, SHEN R J, LI S K, et al.Nondestructive identification of green tea based on near infrared spectroscopy and chemometric methods[J]. Spectroscopy and Spectral Analysis, 2019, 39(8): 2584-2589. (in Chinese with English abstract) |