Acta Agriculturae Zhejiangensis ›› 2020, Vol. 32 ›› Issue (12): 2244-2252.DOI: 10.3969/j.issn.1004-1524.2020.12.16
• Biosystems Engineering • Previous Articles Next Articles
BAO Liea,b(), WANG Mantaoa,b,*(
), LIU Jiangchuana,b, WEN Boa,b, MING Yuea,b
Received:
2020-07-21
Online:
2020-12-25
Published:
2020-12-25
Contact:
WANG Mantao
CLC Number:
BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2020.12.16
样本 Samples | 总数据集 Total data set | 训练集 Training set | 验证集 Validation set | 测试集 Test set |
---|---|---|---|---|
麦穗Wheat | 31 505 | 27 505 | 3 000 | 1 000 |
叶子与背景 | 29 987 | 25 987 | 3 000 | 1 000 |
Leaf and background |
Table 1 Structure of data set
样本 Samples | 总数据集 Total data set | 训练集 Training set | 验证集 Validation set | 测试集 Test set |
---|---|---|---|---|
麦穗Wheat | 31 505 | 27 505 | 3 000 | 1 000 |
叶子与背景 | 29 987 | 25 987 | 3 000 | 1 000 |
Leaf and background |
计数方式 Method | 总麦穗数量 Total wheat quantity | 正确框数 Number of correct boxes | 误检数 Number of mistakenly identified boxes | 漏检数 Number of missed boxes | 误差数 Number of wrong boxes |
---|---|---|---|---|---|
人工计数Manual | 12 530 | 12 530 | 0 | 0 | 0 |
Wheat-Net | 12 632 | 12 288 | 298 | 43 | 341 |
Table 2 Statistics of test result
计数方式 Method | 总麦穗数量 Total wheat quantity | 正确框数 Number of correct boxes | 误检数 Number of mistakenly identified boxes | 漏检数 Number of missed boxes | 误差数 Number of wrong boxes |
---|---|---|---|---|---|
人工计数Manual | 12 530 | 12 530 | 0 | 0 | 0 |
Wheat-Net | 12 632 | 12 288 | 298 | 43 | 341 |
模型 Model | 漏检率 Missed detection rate/% | 误检率 Wrong detection rate/% | 误差率 Error rate/% | 准确率 Accuracy rate/% | 每张所需时间 Time per sheet/s |
---|---|---|---|---|---|
VGG-16 | 2.38 | 2.65 | 5.03 | 94.97 | 0.433 |
Wheat-Net | 0.34 | 2.36 | 2.70 | 97.30 | 0.115 |
Table 3 Comparison of test results by VGG-16 and Wheat-Net methods
模型 Model | 漏检率 Missed detection rate/% | 误检率 Wrong detection rate/% | 误差率 Error rate/% | 准确率 Accuracy rate/% | 每张所需时间 Time per sheet/s |
---|---|---|---|---|---|
VGG-16 | 2.38 | 2.65 | 5.03 | 94.97 | 0.433 |
Wheat-Net | 0.34 | 2.36 | 2.70 | 97.30 | 0.115 |
编号 No. | 人工统计 Artificial statistics | 机器统计 Machine statistics | 正确框数 Number of correct boxes | 误检数 Number of mistakenly identified boxes | 漏检数 Number of missed boxes | 误差数 Number of wrong boxes | 误差率 Error rate/% |
---|---|---|---|---|---|---|---|
1 | 134 | 142 | 133 | 9 | 1 | 10 | 7.46 |
2 | 121 | 124 | 120 | 4 | 1 | 5 | 4.13 |
3 | 132 | 130 | 129 | 1 | 3 | 4 | 3.03 |
4 | 127 | 126 | 125 | 1 | 2 | 3 | 2.36 |
5 | 118 | 122 | 118 | 4 | 0 | 4 | 3.39 |
6 | 117 | 114 | 114 | 0 | 3 | 3 | 2.56 |
7 | 92 | 95 | 92 | 3 | 0 | 3 | 3.26 |
8 | 107 | 104 | 102 | 2 | 5 | 7 | 6.54 |
9 | 107 | 107 | 106 | 1 | 1 | 2 | 1.87 |
10 | 133 | 130 | 129 | 1 | 4 | 5 | 3.76 |
Table 4 Test results of 10 random images
编号 No. | 人工统计 Artificial statistics | 机器统计 Machine statistics | 正确框数 Number of correct boxes | 误检数 Number of mistakenly identified boxes | 漏检数 Number of missed boxes | 误差数 Number of wrong boxes | 误差率 Error rate/% |
---|---|---|---|---|---|---|---|
1 | 134 | 142 | 133 | 9 | 1 | 10 | 7.46 |
2 | 121 | 124 | 120 | 4 | 1 | 5 | 4.13 |
3 | 132 | 130 | 129 | 1 | 3 | 4 | 3.03 |
4 | 127 | 126 | 125 | 1 | 2 | 3 | 2.36 |
5 | 118 | 122 | 118 | 4 | 0 | 4 | 3.39 |
6 | 117 | 114 | 114 | 0 | 3 | 3 | 2.56 |
7 | 92 | 95 | 92 | 3 | 0 | 3 | 3.26 |
8 | 107 | 104 | 102 | 2 | 5 | 7 | 6.54 |
9 | 107 | 107 | 106 | 1 | 1 | 2 | 1.87 |
10 | 133 | 130 | 129 | 1 | 4 | 5 | 3.76 |
拍摄时间 Shooting time | 人工统计 Artificial statistics (total) | 机器统计 Machine statistics | 正确框数 Number of correct boxes | 误检数 Number of mistakenly identified boxes | 漏检数 Number of missed boxes | 误差数 Number of wrong boxes | 误差率 Error rate/% |
---|---|---|---|---|---|---|---|
傍晚Nightfall | 7 431 | 7 631 | 7 080 | 221 | 21 | 242 | 3.25 |
中午Noon | 6 984 | 7 251 | 6 755 | 298 | 31 | 329 | 4.71 |
Table 5 Comparison of picturestaken under different lighting conditions
拍摄时间 Shooting time | 人工统计 Artificial statistics (total) | 机器统计 Machine statistics | 正确框数 Number of correct boxes | 误检数 Number of mistakenly identified boxes | 漏检数 Number of missed boxes | 误差数 Number of wrong boxes | 误差率 Error rate/% |
---|---|---|---|---|---|---|---|
傍晚Nightfall | 7 431 | 7 631 | 7 080 | 221 | 21 | 242 | 3.25 |
中午Noon | 6 984 | 7 251 | 6 755 | 298 | 31 | 329 | 4.71 |
方法 Method | 漏检率 Missed detection rate/% | 误检率 Wrong detection rate/% | 误差率 Error rate/% | 准确率 Accuracy rate/% | 每张所需时间 Time per sheet/s |
---|---|---|---|---|---|
Hourglass Network | 5.09 | 3.54 | 8.63 | 91.37 | — |
YOLOv3 | 0.90 | 12.03 | 12.88 | 87.12 | 0.120 |
Mask R-CNN | 1.50 | 1.50 | 3.00 | 97.00 | 0.940 |
基于颜色和纹理特征 | — | — | 3.45 | 96.55 | — |
Based on color and texture features | |||||
Wheat Net | 0.34 | 2.36 | 2.70 | 97.30 | 0.115 |
Table 6 Experimental results of different methods
方法 Method | 漏检率 Missed detection rate/% | 误检率 Wrong detection rate/% | 误差率 Error rate/% | 准确率 Accuracy rate/% | 每张所需时间 Time per sheet/s |
---|---|---|---|---|---|
Hourglass Network | 5.09 | 3.54 | 8.63 | 91.37 | — |
YOLOv3 | 0.90 | 12.03 | 12.88 | 87.12 | 0.120 |
Mask R-CNN | 1.50 | 1.50 | 3.00 | 97.00 | 0.940 |
基于颜色和纹理特征 | — | — | 3.45 | 96.55 | — |
Based on color and texture features | |||||
Wheat Net | 0.34 | 2.36 | 2.70 | 97.30 | 0.115 |
大田编号 Field No. | m/g | t | a/m2 | 小区预估产量 Estimation yield/kg | 人工称量 Artificial weighing/ (kg·m-2) | 预估产量 Algorithm estimation/ (kg·m-2) | 误差 Error/ (kg·m-2) | 误差率 Error rate/% |
---|---|---|---|---|---|---|---|---|
新乡1号大田 Xinxiang No.1 | 5.02 | 141 | 42 000 | 29 728.44 | 0.69 | 0.71 | 0.02 | 2.90 |
新乡2号大田 Xinxiang No.2 | 4.28 | 158 | 30 000 | 20 287.20 | 0.66 | 0.68 | 0.02 | 3.03 |
漯河1号大田 Luohe No.1 | 4.93 | 135 | 18 000 | 11 979.90 | 0.65 | 0.67 | 0.02 | 3.08 |
漯河2号大田 Luohe No.2 | 4.37 | 148 | 24 000 | 15 522.24 | 0.62 | 0.65 | 0.03 | 4.84 |
Table 7 Statistical results of wheat yield prediction in field
大田编号 Field No. | m/g | t | a/m2 | 小区预估产量 Estimation yield/kg | 人工称量 Artificial weighing/ (kg·m-2) | 预估产量 Algorithm estimation/ (kg·m-2) | 误差 Error/ (kg·m-2) | 误差率 Error rate/% |
---|---|---|---|---|---|---|---|---|
新乡1号大田 Xinxiang No.1 | 5.02 | 141 | 42 000 | 29 728.44 | 0.69 | 0.71 | 0.02 | 2.90 |
新乡2号大田 Xinxiang No.2 | 4.28 | 158 | 30 000 | 20 287.20 | 0.66 | 0.68 | 0.02 | 3.03 |
漯河1号大田 Luohe No.1 | 4.93 | 135 | 18 000 | 11 979.90 | 0.65 | 0.67 | 0.02 | 3.08 |
漯河2号大田 Luohe No.2 | 4.37 | 148 | 24 000 | 15 522.24 | 0.62 | 0.65 | 0.03 | 4.84 |
[1] | LU Y, YI S J, ZENG N Y, et al. Identification of rice diseases using deep convolutional neural networks[J]. Neurocomputing, 2017,267:378-384. |
[2] | JOHANNES A, PICON A, ALVAREZ-GILA A, et al. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case[J]. Computers and Electronics in Agriculture, 2017,138:200-209. |
[3] |
王献锋, 丁军, 朱义海. 一种改进的深度置信网络在棉花病虫害预测中的应用[J]. 棉花学报, 2018,30(4):300-307.
DOI URL |
WANG X F, DING J, ZHU Y H. Application of modified deep belief network in forecasting cotton diseases and insect pests[J]. Cotton Science, 2018,30(4):300-307.(in Chinese with English abstract) | |
[4] | 张建华, 祁力钧, 冀荣华, 等. 基于粗糙集和BP神经网络的棉花病害识别[J]. 农业工程学报, 2012,28(7):161-167. |
ZHANG J H, QI L J, JI R H, et al. Cotton diseases identification based on rough sets and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(7):161-167.(in Chinese with English abstract) | |
[5] |
LU H, CAO Z G, XIAO Y, et al. TasselNet: counting maize tassels in the wild via local counts regression network[J]. Plant Methods, 2017,13(1):1-17.
DOI URL |
[6] |
UBBENS J, CIESLAK M, PRUSINKIEWICZ P, et al. The use of plant models in deep learning: an application to leaf counting in rosette plants[J]. Plant Methods, 2018,14:6-15.
DOI URL PMID |
[7] | TANG J L, WANG D, ZHANG Z G, et al. Weed identification based on K-means feature learning combined with convolutional neural network[J]. Computers and Electronics in Agriculture, 2017,135:63-70. |
[8] | DOS SANTOS FERREIRA A, MATTE FREITAS D, GONÇALVES DA SILVA G, et al. Weed detection in soybean crops using ConvNets[J]. Computers and Electronics in Agriculture, 2017,143:314-324. |
[9] | MEHDIPOUR GHAZI M, YANIKOGLU B, APTOULA E. Plant identification using deep neural networks via optimization of transfer learning parameters[J]. Neurocomputing, 2017,235:228-235. |
[10] | DYRMANN M, KARSTOFT H, MIDTIBY H S. Plant species classification using deep convolutional neural network[J]. Biosystems Engineering, 2016,151:72-80. |
[11] | 刘涛, 孙成明, 王力坚, 等. 基于图像处理技术的大田麦穗计数![J]. 农业机械学报, 2014,45(2):282-290. |
LIU T, SUN C M, WANG L J, et al. In-field wheatear counting based on image processing technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014,45(2):282-290.(in Chinese with English abstract) | |
[12] | 赵锋. 基于颜色特征和改进Adaboost算法的麦穗识别的研究[D]. 保定: 河北农业大学, 2014. |
ZHAO F. Research on wheat ear recognition based on color features and improved Adaboost algorithm[D]. Baoding: Hebei Agricultural University, 2014.(in Chinese with English abstract) | |
[13] | 刘哲, 黄文准, 王利平. 基于改进K-means聚类算法的大田麦穗自动计数[J]. 农业工程学报, 2019,35(3):174-181. |
LIU Z, HUANG W Z, WANG L P. Field wheat ear counting automatically based on improved K-means clustering algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019,35(3):174-181.(in Chinese with English abstract) | |
[14] | 李毅念, 杜世伟, 姚敏, 等. 基于小麦群体图像的田间麦穗计数及产量预测方法[J]. 农业工程学报, 2018,34(21):185-194. |
LI Y N, DU S W, YAO M, et al. Method for wheatear counting and yield predicting based on image of wheatear population in field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(21):185-194.(in Chinese with English abstract) | |
[15] | 范梦扬, 马钦, 刘峻明, 等. 基于机器视觉的大田环境小麦麦穗计数方法[J]. 农业机械学报, 2015,46(增刊):234-239. |
FAN M Y, MA Q, LIU J M, et al. Counting method of wheatear in field based on machine vision technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(Suppl.):234-239.(in Chinese with English abstract) | |
[16] | 张领先, 陈运强, 李云霞, 等. 基于卷积神经网络的冬小麦麦穗检测计数系统[J]. 农业机械学报, 2019,50(3):144-150. |
ZHANG L X, CHEN Y Q, LI Y X, et al. Detection and counting system for winter wheat ears based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019,50(3):144-150.(in Chinese with English abstract) | |
[17] | 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018,23(11):161-171. |
ZHANG J H, KONG F T, WU J Z, et al. Cotton disease identification model based on improved VGG convolution neural network[J]. Journal of China Agricultural University, 2018,23(11):161-171.(in Chinese with English abstract) | |
[18] | 陈含, 吕行军, 田凤珍, 等. 基于Sobel算子边缘检测的麦穗图像分割[J]. 农机化研究, 2013,35(3):33-36. |
CHEN H, LYU X J, TIAN F Z, et al. Wheat panicle image segmentation based on Sobel operator-edge detection[J]. Journal of Agricultural Mechanization Research, 2013,35(3):33-36.(in Chinese with English abstract) | |
[19] | LIU W B, WANG Z D, LIU X H, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017,234:11-26. |
[20] | 马永强, 王顺利, 孙伟, 等. 基于高斯金字塔和拉普拉斯金字塔融合的图像对比度增强算法研究[J]. 信息与电脑(理论版), 2018(4):38-40. |
MA Y Q, WANG S L, SUN W, et al. Research on image contrast enhancement algorithm based on fusion of Gaussian pyramid and laplacian pyramid[J]. China Computer & Communication, 2018(4):38-40.(in Chinese with English abstract) | |
[21] |
朱伟, 刘健, 竺明月, 等. 基于高斯-拉普拉斯金字塔的DR图像增强改进算法研究[J]. 中国医疗器械杂志, 2019,43(1):10-13.
PMID |
ZHU W, LIU J, ZHU M Y, et al. Research on improved algorithm of DR image enhancement based on Gauss-Laplacian pyramid[J]. Chinese Journal of Medical Instrumentation, 2019,43(1):10-13.(in Chinese with English abstract)
URL PMID |
|
[22] | ZORAN S Š, KOVAČEK K I. Sliding window object detection without spatial clustering of raw detection responses [J]. IFAC Proceedings Volumes, 2012,45(22):114-119. |
[23] | 赵文清, 严海, 邵绪强. 改进的非极大值抑制算法的目标检测[J]. 中国图象图形学报, 2018,23(11):1676-1685. |
ZHAO W Q, YAN H, SHAO X Q. Object detection based on improved non-maximum suppression algorithm[J]. Journal of Image and Graphics, 2018,23(11):1676-1685.(in Chinese with English abstract) | |
[24] | 张婷婷. 基于小麦群体图像的麦穗计数方法研究[D]. 合肥: 安徽大学, 2020. |
ZHANG T T. Study on wheat ear counting method based on wheat population image[D]. Hefei: Anhui University, 2020. | |
[25] | 高云鹏. 基于深度神经网络的大田小麦麦穗检测方法研究[D]. 北京: 北京林业大学, 2019. |
GAO Y P. Study on detection method of wheat ear in field based on deep neural network[D]. Beijing: Beijing Forestry University, 2019.(in Chinese with English abstract) | |
[26] | 李鹏. 基于无人机图像的麦穗识别技术研究[D]. 郑州: 河南农业大学, 2019. |
LI P. Research on wheat ear recognition technology based on UAV image[D]. Zhengzhou: Henan Agricultural University, 2019.(in Chinese with English abstract) |
[1] | LIU Zhi, HE Zheng, MIAO Fangfang, JIA Biao. Method and experiment for estimating emergence rate of water and fertilizer integrated maize based on drone technology [J]. , 2019, 31(6): 977-985. |
[2] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
[3] | BU Zhengyan, LI Zhenfeng, SONG Feihu, LI Bin, LI Jing. Determination of moisture content in soybean leaves based on terahertz imaging [J]. , 2018, 30(8): 1420-1426. |
[4] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
[5] | GU Zhengmin, LI Zhenfeng, SONG Feihu, ZHANG Junsheng, ZHUANG Wei. Investigation of measurement method of soybean canopy leaf area based on light field camera [J]. , 2018, 30(12): 2144-2152. |
[6] | ZHANG Shanwen, HUANG Wenzhun, YOU Zhuhong. Recognition method of winter jujube diseases based on internet of things and deep convolutional neural network [J]. , 2017, 29(11): 1868-1874. |
[7] | LI Qi, HU Yicong, WU Fuchuang. Environment control system of seedling box based on image processing [J]. , 2017, 29(11): 1912-1919. |
[8] | SHI Tie,SUO Xue\|song*,ZHOU Jing\|ren,HAN Chang\|xing,GAO Li\|ai. Study on traceability management of modern agricultural facilities: based on the analysis of image recognition of solar cells [J]. , 2015, 27(2): 285-. |
[9] | LI Zhen1,2, LIAO Tong\|qing1, FENG Qing\|chun2,3,4,5, ZHANG Dong\|yan1,2,3,4,5, WANG Xiu2,3,4,5,*. Study on vegetable seed vigor index detection algorithm and system realization based on machine vision [J]. , 2015, 27(12): 2218-. |
[10] | HU Meng-han;DONG Qing-li;*;LIU Bao-lin;ZHANG Chong-yang;YE Fei. Banana shape recognition based on elliptic Fourier descriptor [J]. , 2014, 26(1): 200-205. |
[11] | YAO Li-jian;BIAN Qi;LEI Liang-yu;ZHAO Da-xu. Classification of fruit based on the BP neural network [J]. , 2012, 24(5): 0-930. |
[12] | LIU Jian-jun;YAO Li-jian;PENG Zhang-lin. Detection technique for cathay hickory grade based on machine vision [J]. , 2010, 22(6): 854-858. |
[13] | YANG Qing-ming;LI Juan-ling*;HE Rui-yin. Direction identification of garlic seeds based on image processing [J]. , 2010, 22(1): 0-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||