Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (9): 1625-1639.DOI: 10.3969/j.issn.1004-1524.2021.09.07
• Horticultural Science • Previous Articles Next Articles
XIONG Xue(), ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong*(
)
Received:
2020-11-10
Online:
2021-09-25
Published:
2021-10-09
Contact:
ZHANG Yidong
CLC Number:
XIONG Xue, ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong. Genome-wide identification of CmCIPK family and its expression analysis under abiotic stress in melon[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1625-1639.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.09.07
基因Gene | 上游引物序列Forward primer(5'→ 3') | 下游引物序列Reverse primer(5'→ 3') |
---|---|---|
CmActin | ACATCTGCTGGAAGGTGCTT | CCCTGGTATTGCAGACAGGA |
CmCIPK1-like | TCCATGCATGAAGTGCCATCT | ACAACATCCTCCATCCGCTT |
CmCIPK12-like | GAGATCTCAATCCTCCGCCG | CGCGATGATAAACACCACGC |
Table 1 Primers for real-time PCR
基因Gene | 上游引物序列Forward primer(5'→ 3') | 下游引物序列Reverse primer(5'→ 3') |
---|---|---|
CmActin | ACATCTGCTGGAAGGTGCTT | CCCTGGTATTGCAGACAGGA |
CmCIPK1-like | TCCATGCATGAAGTGCCATCT | ACAACATCCTCCATCCGCTT |
CmCIPK12-like | GAGATCTCAATCCTCCGCCG | CGCGATGATAAACACCACGC |
基因名称 Gene name | 基因号 Gene ID | 基因长度 Gene length/bp | 编码蛋白氨基酸数量 Number of amino acids encoding protein/aa | 分子量 Relative molecular weight/ku | 等电点 PI | 亲水性平均值 Grand average of hydropathicity | 不稳定系数 Instability index |
---|---|---|---|---|---|---|---|
CmCIPK1 | MELO3C006758.2 | 3 023 | 442 | 49.4 | 5.60 | -0.373 | 40.19 |
CmCIPK1-like | MELO3C021231.2 | 7 022 | 459 | 52.8 | 7.26 | -0.235 | 42.96 |
CmCIPK2 | MELO3C026055.2 | 3 380 | 468 | 53.1 | 8.73 | -0.371 | 28.26 |
CmCIPK3 | MELO3C014700.2 | 8 247 | 444 | 50.5 | 6.91 | -0.399 | 34.34 |
CmCIPK5-like | MELO3C016967.2 | 1 793 | 443 | 50.2 | 8.60 | -0.297 | 39.42 |
CmCIPK6-like | MELO3C010234.2 | 1 948 | 430 | 48.5 | 9.07 | -0.381 | 37.43 |
CmCIPK7-like | MELO3C014269.2 | 1 672 | 430 | 47.8 | 9.05 | -0.249 | 40.48 |
CmCIPK8 | MELO3C011108.2 | 6 254 | 446 | 50.7 | 7.58 | -0.280 | 41.25 |
CmCIPK9 | MELO3C005987.2 | 4 322 | 441 | 50.1 | 8.51 | -0.449 | 33.75 |
CmCIPK10-like | MELO3C026873.2 | 2 410 | 471 | 53.3 | 9.12 | -0.451 | 38.89 |
CmCIPK11 | MELO3C027266.2 | 1 652 | 425 | 48.2 | 8.48 | -0.361 | 42.96 |
CmCIPK12-like | MELO3C007208.2 | 2 109 | 467 | 53.0 | 8.26 | -0.334 | 41.95 |
CmCIPK14 | MELO3C026058.2 | 1 499 | 433 | 49.1 | 6.08 | -0.242 | 40.35 |
CmCIPK20 | MELO3C002661.2 | 2 402 | 463 | 52.4 | 9.25 | -0.422 | 33.62 |
CmCIPK23 | MELO3C007110.2 | 5 130 | 455 | 51.2 | 8.74 | -0.316 | 33.88 |
CmCIPK23-like | MELO3C002766.2 | 8 499 | 465 | 52.2 | 9.04 | -0.444 | 35.14 |
CmCIPK24 | MELO3C010334.2 | 6 644 | 437 | 49.7 | 7.64 | -0.297 | 47.75 |
CmCIPK25-like | MELO3C026741.2 | 1 750 | 445 | 50.2 | 8.81 | -0.227 | 34.58 |
Table 2 Basic information of CmCIPK gene family
基因名称 Gene name | 基因号 Gene ID | 基因长度 Gene length/bp | 编码蛋白氨基酸数量 Number of amino acids encoding protein/aa | 分子量 Relative molecular weight/ku | 等电点 PI | 亲水性平均值 Grand average of hydropathicity | 不稳定系数 Instability index |
---|---|---|---|---|---|---|---|
CmCIPK1 | MELO3C006758.2 | 3 023 | 442 | 49.4 | 5.60 | -0.373 | 40.19 |
CmCIPK1-like | MELO3C021231.2 | 7 022 | 459 | 52.8 | 7.26 | -0.235 | 42.96 |
CmCIPK2 | MELO3C026055.2 | 3 380 | 468 | 53.1 | 8.73 | -0.371 | 28.26 |
CmCIPK3 | MELO3C014700.2 | 8 247 | 444 | 50.5 | 6.91 | -0.399 | 34.34 |
CmCIPK5-like | MELO3C016967.2 | 1 793 | 443 | 50.2 | 8.60 | -0.297 | 39.42 |
CmCIPK6-like | MELO3C010234.2 | 1 948 | 430 | 48.5 | 9.07 | -0.381 | 37.43 |
CmCIPK7-like | MELO3C014269.2 | 1 672 | 430 | 47.8 | 9.05 | -0.249 | 40.48 |
CmCIPK8 | MELO3C011108.2 | 6 254 | 446 | 50.7 | 7.58 | -0.280 | 41.25 |
CmCIPK9 | MELO3C005987.2 | 4 322 | 441 | 50.1 | 8.51 | -0.449 | 33.75 |
CmCIPK10-like | MELO3C026873.2 | 2 410 | 471 | 53.3 | 9.12 | -0.451 | 38.89 |
CmCIPK11 | MELO3C027266.2 | 1 652 | 425 | 48.2 | 8.48 | -0.361 | 42.96 |
CmCIPK12-like | MELO3C007208.2 | 2 109 | 467 | 53.0 | 8.26 | -0.334 | 41.95 |
CmCIPK14 | MELO3C026058.2 | 1 499 | 433 | 49.1 | 6.08 | -0.242 | 40.35 |
CmCIPK20 | MELO3C002661.2 | 2 402 | 463 | 52.4 | 9.25 | -0.422 | 33.62 |
CmCIPK23 | MELO3C007110.2 | 5 130 | 455 | 51.2 | 8.74 | -0.316 | 33.88 |
CmCIPK23-like | MELO3C002766.2 | 8 499 | 465 | 52.2 | 9.04 | -0.444 | 35.14 |
CmCIPK24 | MELO3C010334.2 | 6 644 | 437 | 49.7 | 7.64 | -0.297 | 47.75 |
CmCIPK25-like | MELO3C026741.2 | 1 750 | 445 | 50.2 | 8.81 | -0.227 | 34.58 |
Fig.1 Location of CmCIPK on the chromosomes of melon and collinearity analysis A, Specific distribution of members of the CmCIPKs on each chromosome. The size of the chromosome was represented by its relative length. The chromosomes without the CmCIPK(1st, 9th and 10th) were not shown in the figure. B, Collinearity analysis of CmCIPK. The black line represented the gene pair in the CmCIPK family where fragment replication occurred, and the gray line represented all the gene pairs in the melon genome where fragment replication occurred.
Fig.2 Phylogenetic analysis of CIPK proteins in melon, Arabidopsis, rice and cucumber 18 CmCIPK proteins (diamond), 26 AtCIPK proteins (circle), 33 OsCIPK proteins( triangle) and 18 CsCIPK proteins (square) were used to construct the neighbor tree by MEGA 7.0. The five groups were marked as Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ.
Fig.3 Exon-intron structure of CmCIPKs Use TBtools software to draw gene structure, and arrange according to phylogenetic tree. The yellow boxes represented exons, the green boxes represented UTRs, and the lines represented introns.
Fig.4 Motif analysis of CmCIPK proteins A, Use MEME to identify conserved motifs and arrange them according to the phylogenetic tree. Each motif was represented by a colored box, and its name was given on the right. B, Annotation of motif sequence encoding known functional domain. The total height of each stack indicated the sequence conservation at that position, and the height of the letters in each stack represented the degree of conservation of amino acids in the motif.
Fig.5 Promoter cis-elements analysis of CmCIPK gene family ABRE, ABA-responsive element; TGA-element, auxin-responsive element; TC-rich repeats, defense and stress response element; LTR, low-temperature-responsive element; TCA-element, salicylic acid response element; W-box, defense and stress response element; MBS, drought stress response element; CGTCA-motif, Methyl jasmonate-responsive element.
Fig.6 Transcription abundance of CmCIPK in different tissues of melon Use Graphpad 8.2.1 to draw the heat map, the scale represented the relative size of the log2FPKM value, green represented low transcription abundance, and red represented high transcription abundance.
Fig.7 Expression level of CmCIPK1-like and CmCIPK12-like in different tissues of melon Different letters indicated significant differences (P<0.05). The same as below.
[1] |
WEINL S, KUDLA J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives[J]. New Phytologist, 2009, 184(3):517-528.
DOI URL |
[2] |
GUO Y, HALFTER U, ISHITANI M, et al. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. The Plant Cell, 2001, 13(6):1383-1400.
DOI URL |
[3] |
ZHANG H W, FENG H, ZHANG J W, et al. Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum[J]. Journal of Experimental Botany, 2020, 71(14):4345-4358.
DOI URL |
[4] |
MAO J J, MANIK S, SHI S J, et al. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana[J]. Genes, 2016, 7(9):62.
DOI URL |
[5] | OHTA M, GUO Y, HALFTER U, et al. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(20):11771-11776. |
[6] |
YAN Y, LIU W, WEI Y, et al. MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynjournal and regulate drought resistance in cassava[J]. Plant Biotechnology Journal, 2020, 18(7):1504-1506.
DOI URL |
[7] | 刘君璞, 马跃. 我国西瓜甜瓜种业的现状与发展对策[J]. 中国西瓜甜瓜, 2000, 13(3):2-6 |
LIU J P, MA Y. The current situation and development strategies of watermelon and melon seed industry in China[J]. China Watermelion and Muskmelon, 2000, 13(3):2-6.(in Chinese) | |
[8] | 赵鸿, 李凤民, 熊友才, 等. 土壤干旱对作物生长过程和产量影响的研究进展[J]. 干旱气象, 2008, 26(3):67-71. |
ZHAO H, LI F M, XIONG Y C, et al. Advance about impact of soil drying on growth and yield of crops[J]. Arid Meteorology, 2008, 26(3):67-71.(in Chinese with English abstract) | |
[9] |
EDELSTEIN M, PLAUT Z, BEN-HUR M. Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants[J]. Journal of Experimental Botany, 2011, 62(1):177-184.
DOI URL |
[10] |
KANWAR P, SANYAL S K, TOKAS I, et al. Comprehensive structural, interaction and expression analysis of CBL and CIPK complement during abiotic stresses and development in rice[J]. Cell Calcium, 2014, 56(2):81-95.
DOI URL |
[11] | 巴雪丽, 刘婷婷, 钟俐. 白粉病胁迫下甜瓜叶片Hsp70差异表达分析[J]. 生物技术, 2014, 24(5):51-54. |
BA X L, LIU T T, ZHONG L. Expression analysis of Hsp70 gene from the leaves of the muskmelon under the powdery mildew stress[J]. Biotechnology, 2014, 24(5):51-54.(in Chinese with English abstract) | |
[12] |
HU D G, MA Q J, SUN C H, et al. Overexpression of MdSOS2L1, a CIPK protein kinase, increases the antioxidant metabolites to enhance salt tolerance in apple and tomato[J]. Physiologia Plantarum, 2016, 156(2):201-214.
DOI URL |
[13] |
THODAY-KENNEDY E L, JACOBS A K, ROY S J. The role of the CBL: CIPK calcium signalling network in regulating ion transport in response to abiotic stress[J]. Plant Growth Regulation, 2015, 76(1):3-12.
DOI URL |
[14] | GIONG H K, MOON S, JUNG K H. A systematic view of the rice calcineurin B-like protein interacting protein kinase family[J]. Genes & Genomics, 2015, 37(1):55-68. |
[15] | 卓维, 陈倩, 鲁黎明, 等. 烟草NtCIPK2基因的克隆及表达分析[J]. 浙江农业学报, 2017, 29(10):1597-1604. |
ZHUO W, CHEN Q, LU L M, et al. Cloning and expression analysis of NtCIPK2 gene in Nicotiana tabacum[J]. Acta Agriculturae Zhejiangensis, 2017, 29(10):1597-1604.(in Chinese with English abstract) | |
[16] |
CHEN X F, GU Z M, XIN D D, et al. Identification and characterization of putative CIPK genes in maize[J]. Journal of Genetics and Genomics, 2011, 38(2):77-87.
DOI URL |
[17] | 栾非时, 吕慧玲, 朱子成, 等. 西瓜CIPK家族基因的鉴定与特征分析[J]. 北方园艺, 2018(8):1-7. |
LUAN F S, LYU H L, ZHU Z C, et al. Identification and characterization of CIPK family genes in watermelon[J]. Northern Horticulture, 2018(8):1-7.(in Chinese with English abstract) | |
[18] | 王傲雪, 刘思源. 番茄CIPK基因家族鉴定及生物信息学分析[J]. 东北农业大学学报, 2018, 49(2):31-38. |
WANG A X, LIU S Y. Identification and bioinformatics analysis on CIPK gene family in tomato[J]. Journal of Northeast Agricultural University, 2018, 49(2):31-38.(in Chinese with English abstract) | |
[19] | 高清松, 杨泽峰, 徐辰武. 水稻基因组进化的研究进展[J]. 扬州大学学报(农业与生命科学版), 2009, 30(2):34-44. |
GAO Q S, YANG Z F, XU C W. Advances in evolutionary researches for rice genome[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2009, 30(2):34-44.(in Chinese with English abstract) | |
[20] |
KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks[J]. Plant Physiology, 2004, 134(1):43-58.
DOI URL |
[21] | HU W, XIA Z Q, YAN Y, et al. Genome-wide gene phylogeny of CIPK family in cassava and expression analysis of partial drought-induced genes[J]. Frontiers in Plant Science, 2015, 6:914. |
[22] |
ROY S W, PENNY D. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana[J]. Molecular Biology and Evolution, 2006, 24(1):171-181.
DOI URL |
[23] |
YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters[J]. Trends in Plant Science, 2005, 10(2):88-94.
DOI URL |
[24] |
FUJITA Y, FUJITA M, SATOH R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J]. The Plant Cell, 2005, 17(12):3470-3488.
DOI URL |
[25] |
YANG X, YANG Y N, XUE L J, et al. Rice ABI5-Like1 regulates abscisic acid and auxin responses by affecting the expression of ABRE-containing genes[J]. Plant Physiology, 2011, 156(3):1397-1409.
DOI URL |
[26] |
XIONG L M, ZHU J K. Abiotic stress signal transduction in plants: molecular and genetic perspectives[J]. Physiologia Plantarum, 2001, 112(2):152-166.
DOI URL |
[27] |
QIN F, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant and Cell Physiology, 2011, 52(9):1569-1582.
DOI URL |
[28] |
D'ANGELO C, WEINL S, BATISTIC O, et al. Alternative complex formation of the Ca2+-regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis[J]. The Plant Journal, 2006, 48(6):857-872.
DOI URL |
[29] | LI R F, ZHANG J W, WU G Y, et al. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance[J]. Plant, Cell & Environment, 2012, 35(9):1582-1600. |
[30] |
HE L R, YANG X Y, WANG L C, et al. Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants[J]. Biochemical and Biophysical Research Communications, 2013, 435(2):209-215.
DOI URL |
[1] | HE Jiaqi, ZHAI Ying, ZHANG Jun, QIU Shuang, LI Mingyang, ZHAO Yan, ZHANG Meijuan, MA Tianyi. Cloning and expression analysis of GmDof1.5 in soybean under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 1-7. |
[2] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
[3] | JIANG Yaoyao, LI Jing, CAI Nianjun, CHEN Jianping, ZHANG Hengmu. Cloning and expression analysis of a fibrillin gene in plant [J]. , 2019, 31(9): 1399-1404. |
[4] | LIU Huijie, XU Heng, QIU Wenyi, LI Xiaofang, ZHANG Hua, ZHU Ying, LI Chunshou, WANG Liangchao. Roles of bZIP transcription factors in plant growth and development and abiotic stress response [J]. , 2019, 31(7): 1205-1214. |
[5] | WENG Qiao-yun, ZHAO Yan-min, ZHANG He, SONG Jin-hui, MA Hai-lian, YUAN Jin-cheng, LIU Ying-hui. Cloning of ZmREM and its expression analysis in maize under stress [J]. , 2016, 28(11): 1822-1827. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||