Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (3): 599-613.DOI: 10.3969/j.issn.1004-1524.2022.03.21
• Biosystems Engineening • Previous Articles Next Articles
HAN Yuanshun(), XU Linyun(
), ZHOU Jie, YU Bing
Received:
2020-10-27
Online:
2022-03-25
Published:
2022-03-30
Contact:
XU Linyun
CLC Number:
HAN Yuanshun, XU Linyun, ZHOU Jie, YU Bing. Experimental study on vibration response and fruit dropping of chestnut tree[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 599-613.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.03.21
编号 No. | 树高 Tree height/m | 冠幅 Crown/m | 根部直径 Root diameter/mm | 主干高 Trunk height/mm | 激振位置 Vibration position/mm |
---|---|---|---|---|---|
Ⅰ | 4.5 | 4.0 | 214 | 1400 | 950 |
Ⅱ | 3.5 | 3.0 | 205 | 650 | 450 |
Ⅲ | 4.0 | 4.5 | 187 | 850 | 550 |
Table 1 Basic characteristic parameters of sample tree
编号 No. | 树高 Tree height/m | 冠幅 Crown/m | 根部直径 Root diameter/mm | 主干高 Trunk height/mm | 激振位置 Vibration position/mm |
---|---|---|---|---|---|
Ⅰ | 4.5 | 4.0 | 214 | 1400 | 950 |
Ⅱ | 3.5 | 3.0 | 205 | 650 | 450 |
Ⅲ | 4.0 | 4.5 | 187 | 850 | 550 |
测点 Point | 树Ⅰ TreeⅠ | 树Ⅱ TreeⅡ | 树Ⅲ TreeⅢ | |||
---|---|---|---|---|---|---|
直径 Diameter | 距分叉点距离 Distance from bifurcation point | 直径 Diameter | 距分叉点距离 Distance from bifurcation point | 直径 Diameter | 距分叉点距离 Distance from bifurcation point | |
T | 199 | 1 050 | 191 | 550 | 182 | 650 |
A1 | 96 | 800 | 127 | 600 | 73 | 800 |
A2 | 79 | 1 600 | 109 | 1 200 | 65 | 1 600 |
A3 | 71 | 2 400 | 89 | 1 800 | — | — |
B1 | 74 | 650 | 109 | 700 | 128 | 800 |
B2 | 72 | 1 300 | 99 | 1 400 | 102 | 1 600 |
B3 | 71 | 1 950 | 93 | 2 100 | — | — |
C1 | 77 | 700 | 89 | 630 | 71 | 550 |
C2 | 75 | 1 400 | 71 | 1 260 | 66 | 1 100 |
C3 | — | — | 63 | 1 890 | — | — |
D1 | 96 | 750 | — | — | 109 | 650 |
D2 | 94 | 1 500 | — | — | 94 | 1 300 |
Table 2 Parameters at position of each measuring point mm
测点 Point | 树Ⅰ TreeⅠ | 树Ⅱ TreeⅡ | 树Ⅲ TreeⅢ | |||
---|---|---|---|---|---|---|
直径 Diameter | 距分叉点距离 Distance from bifurcation point | 直径 Diameter | 距分叉点距离 Distance from bifurcation point | 直径 Diameter | 距分叉点距离 Distance from bifurcation point | |
T | 199 | 1 050 | 191 | 550 | 182 | 650 |
A1 | 96 | 800 | 127 | 600 | 73 | 800 |
A2 | 79 | 1 600 | 109 | 1 200 | 65 | 1 600 |
A3 | 71 | 2 400 | 89 | 1 800 | — | — |
B1 | 74 | 650 | 109 | 700 | 128 | 800 |
B2 | 72 | 1 300 | 99 | 1 400 | 102 | 1 600 |
B3 | 71 | 1 950 | 93 | 2 100 | — | — |
C1 | 77 | 700 | 89 | 630 | 71 | 550 |
C2 | 75 | 1 400 | 71 | 1 260 | 66 | 1 100 |
C3 | — | — | 63 | 1 890 | — | — |
D1 | 96 | 750 | — | — | 109 | 650 |
D2 | 94 | 1 500 | — | — | 94 | 1 300 |
Fig.3 Dynamic model of vibration harvester-chestnut tree M1, The mass of eccentric motor (except eccentric block); M2, The equivalent mass of chestnut tree at the clamping point; m, The mass of eccentric block, kg; ω, The rotation frequency of eccentric block, r·s-1; r, The eccentricity of the eccentric block, m; k, The equivalent elastic coefficient, N·m-1; c, The equivalent damping coefficient, Ns·m-1; L, The distance between the rotating shaft of the excitation device and the center of chestnut tree, m.
Fig.4 Stress analysis of fruit induced by excitation P, The center of mass of fruit; f(t), The excitation force; N, The separation force between the fruit and the stalk; F, The inertia force; Fn, The normal inertia force; Ft, The tangential inertia force; G, The gravity of the fruit itself, N; φ, The angle between the fruit branch and the vertical direction; α, The angle between the normal inertia force and the vertical direction, °; ap, The fruit acceleration; an, The fruit normal acceleration; at, The fruit tangential acceleration, m·s-2.
频率 Frequency/Hz | Ⅰ | Ⅱ | Ⅲ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
aX | aY | aZ | a | aX | aY | aZ | a | aX | aY | aZ | a | |
10 | 1.11 | 1.43 | 0.10 | 1.81 | 0.28 | 0.12 | 0.13 | 0.33 | 0.41 | 0.55 | 0.04 | 0.69 |
12 | 1.59 | 3.35 | 0.22 | 3.72 | 0.48 | 0.29 | 0.17 | 0.59 | 0.80 | 1.16 | 0.22 | 1.43 |
14 | 3.39 | 4.50 | 0.27 | 5.64 | 0.76 | 0.64 | 0.21 | 1.02 | 1.26 | 2.39 | 0.43 | 2.73 |
16 | 5.52 | 6.26 | 0.30 | 8.35 | 1.26 | 1.17 | 0.36 | 1.76 | 2.72 | 4.57 | 0.71 | 5.36 |
18 | 9.55 | 8.54 | 0.32 | 12.81 | 2.05 | 1.70 | 0.55 | 2.72 | 4.01 | 7.30 | 1.54 | 8.47 |
20 | 12.88 | 10.16 | 0.35 | 16.41 | 3.06 | 2.79 | 0.76 | 4.21 | 5.73 | 10.74 | 2.00 | 12.33 |
22 | 14.97 | 12.21 | 0.38 | 19.33 | 4.03 | 4.58 | 1.16 | 6.21 | 9.08 | 13.74 | 2.51 | 16.66 |
24 | 15.84 | 14.52 | 0.44 | 21.49 | 5.18 | 6.51 | 1.51 | 8.45 | 10.02 | 18.35 | 3.44 | 21.19 |
26 | 17.61 | 17.16 | 0.67 | 24.59 | 6.09 | 9.38 | 1.94 | 11.34 | 10.59 | 22.43 | 4.78 | 25.26 |
28 | 21.23 | 18.13 | 0.70 | 27.93 | 6.83 | 13.02 | 2.10 | 14.85 | 11.13 | 27.42 | 5.37 | 30.07 |
30 | 25.07 | 21.94 | 1.03 | 33.33 | 7.07 | 15.50 | 2.32 | 17.19 | 11.81 | 27.73 | 6.40 | 30.81 |
Table 3 Amplitude of trunk acceleration m·s-2
频率 Frequency/Hz | Ⅰ | Ⅱ | Ⅲ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
aX | aY | aZ | a | aX | aY | aZ | a | aX | aY | aZ | a | |
10 | 1.11 | 1.43 | 0.10 | 1.81 | 0.28 | 0.12 | 0.13 | 0.33 | 0.41 | 0.55 | 0.04 | 0.69 |
12 | 1.59 | 3.35 | 0.22 | 3.72 | 0.48 | 0.29 | 0.17 | 0.59 | 0.80 | 1.16 | 0.22 | 1.43 |
14 | 3.39 | 4.50 | 0.27 | 5.64 | 0.76 | 0.64 | 0.21 | 1.02 | 1.26 | 2.39 | 0.43 | 2.73 |
16 | 5.52 | 6.26 | 0.30 | 8.35 | 1.26 | 1.17 | 0.36 | 1.76 | 2.72 | 4.57 | 0.71 | 5.36 |
18 | 9.55 | 8.54 | 0.32 | 12.81 | 2.05 | 1.70 | 0.55 | 2.72 | 4.01 | 7.30 | 1.54 | 8.47 |
20 | 12.88 | 10.16 | 0.35 | 16.41 | 3.06 | 2.79 | 0.76 | 4.21 | 5.73 | 10.74 | 2.00 | 12.33 |
22 | 14.97 | 12.21 | 0.38 | 19.33 | 4.03 | 4.58 | 1.16 | 6.21 | 9.08 | 13.74 | 2.51 | 16.66 |
24 | 15.84 | 14.52 | 0.44 | 21.49 | 5.18 | 6.51 | 1.51 | 8.45 | 10.02 | 18.35 | 3.44 | 21.19 |
26 | 17.61 | 17.16 | 0.67 | 24.59 | 6.09 | 9.38 | 1.94 | 11.34 | 10.59 | 22.43 | 4.78 | 25.26 |
28 | 21.23 | 18.13 | 0.70 | 27.93 | 6.83 | 13.02 | 2.10 | 14.85 | 11.13 | 27.42 | 5.37 | 30.07 |
30 | 25.07 | 21.94 | 1.03 | 33.33 | 7.07 | 15.50 | 2.32 | 17.19 | 11.81 | 27.73 | 6.40 | 30.81 |
Fig.5 Acceleration amplitude variation curves of three-direction acceleration at measuring point A1 and A3 on treeⅠ a,Sample tree Ⅰ point A1; b, Sample tree Ⅰ point A3.
Fig.6 Acceleration amplitude variation curves at measuring point A2 on tree Ⅰ and point A1 on tree Ⅲ a,Sample tree Ⅰ point A2; b, Sample tree Ⅲ point A1.
编号 No. | 测点 Point | 频率Frequency/Hz | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | ||
Ⅰ | A1 | 2.9 | 5.8 | 8.5 | 11.7 | 16.5 | 21.6 | 24.3 | 28.9 | 35.3 | 38.3 | 43.7 |
A2 | 4.1 | 8.5 | 11.8 | 20.9 | 26.1 | 28.8 | 30.7 | 33.0 | 44.6 | 50.8 | 57.9 | |
A3 | 4.4 | 8.5 | 12.3 | 20.0 | 28.5 | 31.8 | 33.1 | 34.8 | 39.6 | 46.6 | 54.9 | |
B1 | 2.1 | 5.1 | 7.7 | 9.6 | 17.2 | 23.7 | 30.2 | 36.2 | 39.8 | 45.2 | 49.0 | |
B2 | 2.2 | 5.4 | 5.9 | 7.8 | 10.6 | 20.1 | 22.8 | 27.9 | 29.8 | 33.0 | 38.6 | |
B3 | 2.2 | 5.8 | 6.8 | 7.9 | 14.1 | 24.5 | 25.4 | 29.9 | 33.7 | 37.0 | 46.1 | |
C1 | 2.9 | 6.3 | 8.4 | 11.9 | 19.2 | 25.8 | 30.8 | 37.1 | 39.9 | 43.4 | 48.1 | |
C2 | 3.2 | 6.9 | 10.1 | 16.2 | 24.3 | 30.5 | 36.7 | 41.2 | 47.2 | 59.3 | 64.1 | |
D1 | 3.5 | 8.0 | 10.1 | 12.3 | 18.0 | 28.3 | 34.6 | 38.9 | 49.5 | 52.7 | 58.4 | |
D2 | 3.4 | 7.9 | 11.1 | 12.1 | 16.7 | 24.0 | 30.5 | 37.6 | 46.4 | 51.6 | 61.7 | |
Ⅱ | A1 | 0.5 | 1.1 | 1.7 | 2.7 | 4.1 | 6.9 | 11.5 | 17.4 | 22.4 | 26.1 | 29.1 |
A2 | 0.5 | 1.3 | 2.4 | 3.6 | 5.2 | 8.1 | 11.8 | 18.0 | 26.5 | 32.4 | 39.1 | |
A3 | 0.5 | 1.3 | 2.7 | 3.9 | 5.5 | 7.6 | 11.4 | 16.0 | 25.3 | 31.2 | 34.0 | |
B1 | 0.7 | 1.3 | 2.2 | 3.4 | 5.3 | 9.4 | 14.1 | 19.3 | 26.1 | 31.0 | 33.9 | |
B2 | 0.8 | 1.5 | 2.5 | 3.6 | 4.8 | 9.5 | 14.0 | 19.7 | 27.5 | 30.7 | 38.0 | |
B3 | 1.0 | 2.0 | 3.1 | 4.2 | 5.4 | 11.6 | 15.9 | 21.6 | 32.5 | 36.0 | 40.4 | |
C1 | 0.5 | 0.9 | 1.5 | 2.7 | 3.9 | 6.9 | 9.6 | 13.1 | 17.2 | 20.8 | 22.4 | |
C2 | 0.8 | 1.4 | 2.4 | 3.9 | 4.7 | 8.5 | 11.0 | 15.7 | 18.7 | 23.6 | 27.1 | |
C3 | 0.9 | 1.8 | 4.0 | 5.6 | 5.7 | 10.5 | 13.3 | 19.2 | 22.0 | 28.1 | 32.6 | |
Ⅲ | A1 | 0.9 | 1.8 | 3.8 | 6.3 | 11.7 | 18.4 | 31.9 | 27.6 | 29.7 | 32.5 | 35.0 |
A2 | 0.9 | 1.7 | 3.2 | 5.5 | 10.9 | 20.6 | 43.1 | 41.2 | 42.2 | 44.8 | 45.8 | |
B1 | 1.0 | 2.1 | 3.5 | 6.9 | 11.9 | 17.7 | 22.4 | 28.6 | 35.2 | 39.8 | 41.7 | |
B2 | 1.0 | 2.2 | 3.7 | 5.9 | 11.1 | 17.5 | 19.2 | 28.8 | 36.1 | 39.9 | 47.1 | |
C1 | 1.4 | 2.5 | 4.0 | 7.1 | 11.3 | 18.5 | 25.0 | 34.2 | 46.5 | 56.0 | 59.3 | |
C2 | 1.3 | 2.4 | 4.1 | 6.5 | 11.0 | 16.9 | 22.6 | 31.3 | 45.8 | 57.2 | 67.0 | |
D1 | 0.9 | 1.9 | 3.5 | 6.7 | 10.8 | 17.5 | 22.5 | 29.6 | 34.3 | 41.2 | 46.4 | |
D2 | 1.1 | 2.0 | 3.1 | 5.1 | 9.2 | 14.9 | 18.2 | 23.9 | 34.6 | 39.8 | 48.3 |
Table 4 Combined acceleration response amplitude at measuring points of fruit branch m·s-2
编号 No. | 测点 Point | 频率Frequency/Hz | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 12 | 14 | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | ||
Ⅰ | A1 | 2.9 | 5.8 | 8.5 | 11.7 | 16.5 | 21.6 | 24.3 | 28.9 | 35.3 | 38.3 | 43.7 |
A2 | 4.1 | 8.5 | 11.8 | 20.9 | 26.1 | 28.8 | 30.7 | 33.0 | 44.6 | 50.8 | 57.9 | |
A3 | 4.4 | 8.5 | 12.3 | 20.0 | 28.5 | 31.8 | 33.1 | 34.8 | 39.6 | 46.6 | 54.9 | |
B1 | 2.1 | 5.1 | 7.7 | 9.6 | 17.2 | 23.7 | 30.2 | 36.2 | 39.8 | 45.2 | 49.0 | |
B2 | 2.2 | 5.4 | 5.9 | 7.8 | 10.6 | 20.1 | 22.8 | 27.9 | 29.8 | 33.0 | 38.6 | |
B3 | 2.2 | 5.8 | 6.8 | 7.9 | 14.1 | 24.5 | 25.4 | 29.9 | 33.7 | 37.0 | 46.1 | |
C1 | 2.9 | 6.3 | 8.4 | 11.9 | 19.2 | 25.8 | 30.8 | 37.1 | 39.9 | 43.4 | 48.1 | |
C2 | 3.2 | 6.9 | 10.1 | 16.2 | 24.3 | 30.5 | 36.7 | 41.2 | 47.2 | 59.3 | 64.1 | |
D1 | 3.5 | 8.0 | 10.1 | 12.3 | 18.0 | 28.3 | 34.6 | 38.9 | 49.5 | 52.7 | 58.4 | |
D2 | 3.4 | 7.9 | 11.1 | 12.1 | 16.7 | 24.0 | 30.5 | 37.6 | 46.4 | 51.6 | 61.7 | |
Ⅱ | A1 | 0.5 | 1.1 | 1.7 | 2.7 | 4.1 | 6.9 | 11.5 | 17.4 | 22.4 | 26.1 | 29.1 |
A2 | 0.5 | 1.3 | 2.4 | 3.6 | 5.2 | 8.1 | 11.8 | 18.0 | 26.5 | 32.4 | 39.1 | |
A3 | 0.5 | 1.3 | 2.7 | 3.9 | 5.5 | 7.6 | 11.4 | 16.0 | 25.3 | 31.2 | 34.0 | |
B1 | 0.7 | 1.3 | 2.2 | 3.4 | 5.3 | 9.4 | 14.1 | 19.3 | 26.1 | 31.0 | 33.9 | |
B2 | 0.8 | 1.5 | 2.5 | 3.6 | 4.8 | 9.5 | 14.0 | 19.7 | 27.5 | 30.7 | 38.0 | |
B3 | 1.0 | 2.0 | 3.1 | 4.2 | 5.4 | 11.6 | 15.9 | 21.6 | 32.5 | 36.0 | 40.4 | |
C1 | 0.5 | 0.9 | 1.5 | 2.7 | 3.9 | 6.9 | 9.6 | 13.1 | 17.2 | 20.8 | 22.4 | |
C2 | 0.8 | 1.4 | 2.4 | 3.9 | 4.7 | 8.5 | 11.0 | 15.7 | 18.7 | 23.6 | 27.1 | |
C3 | 0.9 | 1.8 | 4.0 | 5.6 | 5.7 | 10.5 | 13.3 | 19.2 | 22.0 | 28.1 | 32.6 | |
Ⅲ | A1 | 0.9 | 1.8 | 3.8 | 6.3 | 11.7 | 18.4 | 31.9 | 27.6 | 29.7 | 32.5 | 35.0 |
A2 | 0.9 | 1.7 | 3.2 | 5.5 | 10.9 | 20.6 | 43.1 | 41.2 | 42.2 | 44.8 | 45.8 | |
B1 | 1.0 | 2.1 | 3.5 | 6.9 | 11.9 | 17.7 | 22.4 | 28.6 | 35.2 | 39.8 | 41.7 | |
B2 | 1.0 | 2.2 | 3.7 | 5.9 | 11.1 | 17.5 | 19.2 | 28.8 | 36.1 | 39.9 | 47.1 | |
C1 | 1.4 | 2.5 | 4.0 | 7.1 | 11.3 | 18.5 | 25.0 | 34.2 | 46.5 | 56.0 | 59.3 | |
C2 | 1.3 | 2.4 | 4.1 | 6.5 | 11.0 | 16.9 | 22.6 | 31.3 | 45.8 | 57.2 | 67.0 | |
D1 | 0.9 | 1.9 | 3.5 | 6.7 | 10.8 | 17.5 | 22.5 | 29.6 | 34.3 | 41.2 | 46.4 | |
D2 | 1.1 | 2.0 | 3.1 | 5.1 | 9.2 | 14.9 | 18.2 | 23.9 | 34.6 | 39.8 | 48.3 |
测点 Point | Ⅰ | Ⅱ | Ⅲ | ||||||
---|---|---|---|---|---|---|---|---|---|
β1 | β2 | R2 | β1 | β2 | R2 | β1 | β2 | R2 | |
A1 | 0.053 | -0.074 | 0.998 | 0.057 | -0.694 | 0.992 | 0.052 | -0.214 | 0.961 |
A2 | 0.060 | 0.134 | 0.994 | 0.074 | -0.966 | 0.990 | 0.081 | -0.576 | 0.945 |
A3 | 0.046 | 0.422 | 0.990 | 0.065 | -0.813 | 0.988 | — | — | — |
B1 | 0.069 | -0.299 | 0.993 | 0.065 | -0.766 | 0.994 | 0.071 | -0.602 | 0.993 |
B2 | 0.051 | -0.191 | 0.991 | 0.070 | -0.860 | 0.994 | 0.081 | -0.812 | 0.997 |
B3 | 0.060 | -0.244 | 0.991 | 0.077 | -0.901 | 0.991 | — | — | — |
C1 | 0.059 | -0.045 | 0.992 | 0.042 | -0.473 | 0.995 | 0.111 | -1.248 | 0.995 |
C2 | 0.084 | -0.290 | 0.997 | 0.047 | -0.502 | 0.997 | 0.125 | -1.541 | 0.994 |
C3 | — | — | — | 0.054 | -0.540 | 0.997 | — | — | — |
D1 | 0.079 | -0.313 | 0.995 | — | — | — | 0.080 | -0.770 | 0.997 |
D2 | 0.085 | -0.494 | 0.999 | 0.086 | -0.979 | 0.997 |
Table 5 Fitting coefficient and determination coefficient
测点 Point | Ⅰ | Ⅱ | Ⅲ | ||||||
---|---|---|---|---|---|---|---|---|---|
β1 | β2 | R2 | β1 | β2 | R2 | β1 | β2 | R2 | |
A1 | 0.053 | -0.074 | 0.998 | 0.057 | -0.694 | 0.992 | 0.052 | -0.214 | 0.961 |
A2 | 0.060 | 0.134 | 0.994 | 0.074 | -0.966 | 0.990 | 0.081 | -0.576 | 0.945 |
A3 | 0.046 | 0.422 | 0.990 | 0.065 | -0.813 | 0.988 | — | — | — |
B1 | 0.069 | -0.299 | 0.993 | 0.065 | -0.766 | 0.994 | 0.071 | -0.602 | 0.993 |
B2 | 0.051 | -0.191 | 0.991 | 0.070 | -0.860 | 0.994 | 0.081 | -0.812 | 0.997 |
B3 | 0.060 | -0.244 | 0.991 | 0.077 | -0.901 | 0.991 | — | — | — |
C1 | 0.059 | -0.045 | 0.992 | 0.042 | -0.473 | 0.995 | 0.111 | -1.248 | 0.995 |
C2 | 0.084 | -0.290 | 0.997 | 0.047 | -0.502 | 0.997 | 0.125 | -1.541 | 0.994 |
C3 | — | — | — | 0.054 | -0.540 | 0.997 | — | — | — |
D1 | 0.079 | -0.313 | 0.995 | — | — | — | 0.080 | -0.770 | 0.997 |
D2 | 0.085 | -0.494 | 0.999 | 0.086 | -0.979 | 0.997 |
Fig.10 Curve fitting of Chinese chestnut fruit dropping rate with frequency change a, Tree Ⅰ mature fruit; b, Tree Ⅰ immature ripe fruit; c, Tree Ⅱ mature fruit; d, Tree Ⅱ immature fruit; e, Tree Ⅲ mature fruit; f, Tree Ⅲ immature fruit.
编号 No. | 成熟果实 Mature | 未成熟果实 Immature |
---|---|---|
Ⅰ | 85.0 | 30.3 |
Ⅱ | 74.1 | 37.8 |
Ⅲ | 80.8 | 29.1 |
平均值Mean | 80.0 | 32.4 |
Table 6 Fruit dropping rate statistics %
编号 No. | 成熟果实 Mature | 未成熟果实 Immature |
---|---|---|
Ⅰ | 85.0 | 30.3 |
Ⅱ | 74.1 | 37.8 |
Ⅲ | 80.8 | 29.1 |
平均值Mean | 80.0 | 32.4 |
频率 Frequency/Hz | 综合得分 Comprehensive scores | ||
---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | |
10 | 0 | 79.1 | 4.9 |
12 | 47.0 | 79.1 | 4.9 |
14 | 47.0 | 79.1 | 51.9 |
16 | 41.1 | 78.3 | 61.8 |
18 | 72.0 | 93.7 | 100.0 |
20 | 100.0 | 100.0 | 99.4 |
22 | 90.0 | 73.8 | 84.7 |
24 | 68.4 | 37.1 | 62.7 |
26 | 40.4 | 0.0 | 11.7 |
28 | 4.2 | 11.5 | 0.0 |
30 | 22.9 | 31.0 | 22.0 |
Table 7 Comprehensive score table
频率 Frequency/Hz | 综合得分 Comprehensive scores | ||
---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | |
10 | 0 | 79.1 | 4.9 |
12 | 47.0 | 79.1 | 4.9 |
14 | 47.0 | 79.1 | 51.9 |
16 | 41.1 | 78.3 | 61.8 |
18 | 72.0 | 93.7 | 100.0 |
20 | 100.0 | 100.0 | 99.4 |
22 | 90.0 | 73.8 | 84.7 |
24 | 68.4 | 37.1 | 62.7 |
26 | 40.4 | 0.0 | 11.7 |
28 | 4.2 | 11.5 | 0.0 |
30 | 22.9 | 31.0 | 22.0 |
[1] | 张宇和, 柳鎏, 梁维坚. 中国果树志:板栗:榛子卷[M]. 北京: 中国林业出版社, 2005. |
[2] | 高海生, 常学东, 蔡金星, 等. 我国板栗加工产业的现状与发展趋势[J]. 中国食品学报, 2006, 6(1): 429-436. |
GAO H S, CHANG X D, CAI J X, et al. Production situation and development trend of chestnut processing[J]. Journal of Chinese Institute of Food Science and Technology, 2006, 6(1): 429-436. (in Chinese with English abstract) | |
[3] | 刘国彬, 兰彦平, 姚研武, 等. 板栗结实特性研究[J]. 浙江农业学报, 2011, 23(2): 288-291. |
LIU G B, LAN Y P, YAO Y W, et al. Fruiting characteristics of Castanea mollissima[J]. Acta Agriculturae Zhejiangensis, 2011, 23(2): 288-291. (in Chinese with English abstract) | |
[4] | 国家林业局. 中国林业统计年鉴[M]. 北京: 中国林业出版社, 2018. |
[5] | 蔡荣, 虢佳花, 祁春节. 板栗产业发展现状、问题与对策[J]. 北方果树, 2007(4): 1-3. |
CAI R, GUO J H, QI C J. Problems and countermeasures of chestnut industry[J]. Northern Fruits, 2007(4): 1-3. (in Chinese) | |
[6] |
CROOKE J R, RAND R H. Vibratory fruit harvesting: a linear theory of fruit-stem dynamics[J]. Journal of Agricultural Engineering Research, 1969, 14(3): 195-209.
DOI URL |
[7] |
MOORE J R, MAGUIRE D A. Natural sway frequencies and damping ratios of trees: influence of crown structure[J]. Trees, 2005, 19(4): 363-373.
DOI URL |
[8] |
CASTRO-GARCÍA S, BLANCO-ROLDÁN G L, GIL-RIBES J A. Vibrational and operational parameters in mechanical cone harvesting of stone pine (Pinus pinea L.)[J]. Biosystems Engineering, 2012, 112(4): 352-358.
DOI URL |
[9] |
SOLA-GUIRADO R R, CASTRO-GARCÍA S, BLANCO-ROLDÁN G L, et al. Traditional olive tree response to oil olive harvesting technologies[J]. Biosystems Engineering, 2014, 118: 186-193.
DOI URL |
[10] | 王长勤. 偏心式林果振动采收机的设计及试验研究[D]. 南京: 南京林业大学, 2012. |
WANG C Q. Design and experimental study of the eccentric-type forest-fruit vibratory harvester[D]. Nanjing: Nanjing Forestry University, 2012. (in Chinese with English abstract) | |
[11] | 林欢, 许林云, 宣言, 等. 林果振动加速度响应振型试验[J]. 林业工程学报, 2016, 1(1): 100-104. |
LIN H, XU L Y, XUAN Y, et al. Experimental research on the vibration mode of fruit vibration acceleration response[J]. Journal of Forestry Engineering, 2016, 1(1): 100-104. (in Chinese with English abstract) | |
[12] | 何苗, 坎杂, 李成松, 等. 枸杞振动采收机理分析与试验[J]. 农业工程学报, 2017, 33(11): 47-53. |
HE M, KAN Z, LI C S, et al. Mechanism analysis and experiment on vibration harvesting of wolfberry[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 47-53. (in Chinese with English abstract) | |
[13] | 杜小强, 李松涛, 贺磊盈, 等. 三维激振果品采收机构优化设计与试验[J]. 农业工程学报, 2017, 33(16): 48-55. |
DU X Q, LI S T, HE L Y, et al. Optimal design and experiment on vibratory fruit harvesting mechanism with three-dimensional excitation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 48-55. (in Chinese with English abstract) | |
[14] | 耿雷. 基于刚柔耦合动力学分析的蓝莓采摘机理与影响因素研究[D]. 哈尔滨: 东北林业大学, 2017. |
GENG L. Research on blueberry picking mechanism and influencing factors based on dynamic analysis of rigid-flexible coupling[D]. Harbin: Northeast Forestry University, 2017. (in Chinese with English abstract) | |
[15] | MARTIN B, TORREGROSA A, ORTIZ C, et al. Mechanical harvesting of apricots (‘Búlida’) in Spain[J]. Acta Horticulturae, 2006(717): 303-306. |
[16] | 沈瑞珍, 张晓文. 银杏侧枝振动落果的试验研究[J]. 林业科学, 1997, 33(2): 81-87. |
SHEN R Z, ZHANG X W. The research on the dislodging of fruits by vibration with the branches of Ginkgo biloba L[J]. Scientia Silvae Sinicae, 1997, 33(2): 81-87. (in Chinese with English abstract) | |
[17] | 林欢, 许林云, 周宏平, 等. 机械采收作业中银杏树频谱特性与振动响应关系研究(英文)[J]. 农业工程学报, 2017, 33(17):51-57. |
LIN H, XU L Y, ZHOU H P, et al. Relationship between frequency spectrum characteristics and vibration responses of Ginkgo biloba trees during mechanical harvesting operation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 51-57.(in English with Chinese abstract) | |
[18] | 崔文哲, 徐道春, 李文彬, 等. 无患子果树不同激振条件下的振动响应特性研究[J]. 西北林学院学报, 2018, 33(6): 287-291. |
CUI W Z, XU D C, LI W B, et al. Vibration response characteristics of Sapindus mukorossi tree under different excitations[J]. Journal of Northwest Forestry University, 2018, 33(6): 287-291. (in Chinese with English abstract) | |
[19] | 杜小强, 李党伟, 贺磊盈, 等. 基于电子果实技术的机械振动采收过程果实运动分析[J]. 农业工程学报, 2017, 33(17): 58-64. |
DU X Q, LI D W, HE L Y, et al. Fruit motion analysis in process of mechanical vibration harvesting based on electronic fruit technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 58-64. (in Chinese with English abstract) | |
[20] | D'AGOSTINO A, GIAMETTA F, GIAMETTA G, et al. Preliminary tests to assess the dynamics of the vibrations transmitted on olive trees by mechanized harvest by shakers[J]. Acta Horticulturae, 2008(791): 285-295. |
[21] | DU X Q, WU C Y, HE L Y, et al. Dynamic characteristics of dwarf Chinese hickory trees under impact excitations for mechanical fruit harvesting[J]. International Journal of Agricultural and Biological Engineering, 2015, 8(1):17-25. |
[22] | 散鋆龙, 杨会民, 王学农, 等. 振动收获过程中杏果实脱落的动态响应[J]. 农业工程学报, 2018, 34(18): 68-75. |
SAN Y L, YANG H M, WANG X N, et al. Dynamic response analysis of apricot fruit dropping during vibration harvesting[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(18): 68-75. (in Chinese with English abstract) | |
[23] |
DU X Q, CHEN D, ZHANG Q, et al. Dynamic responses of sweet cherry trees under vibratory excitations[J]. Biosystems Engineering, 2012, 111(3): 305-314.
DOI URL |
[24] |
CASTRO-GARCÍA S, BLANCO-ROLDÁN G L, GIL-RIBES J A, et al. Dynamic analysis of olive trees in intensive orchards under forced vibration[J]. Trees, 2008, 22(6): 795-802.
DOI URL |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||