Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (8): 1806-1814.DOI: 10.3969/j.issn.1004-1524.2022.08.24
• Review • Previous Articles
OU Chun1(), ZHANG Min1, DING Lin2, YAO Xiamei3, WANG Zelu1, PENG Cheng2,*(
), XU Junfeng2
Received:
2021-11-03
Online:
2022-08-25
Published:
2022-08-26
Contact:
PENG Cheng
CLC Number:
OU Chun, ZHANG Min, DING Lin, YAO Xiamei, WANG Zelu, PENG Cheng, XU Junfeng. Application and policy regulation of CRISPR/Cas9 gene editing technology in plants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1806-1814.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.08.24
[1] |
HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278.
DOI URL |
[2] |
CHENG A W, WANG H Y, YANGH, et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system[J]. Cell Research, 2013, 23(10): 1163-1171.
DOI URL |
[3] |
ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-cas13[J]. Nature, 2017, 550(7675): 280-284.
DOI URL |
[4] |
ZHANG Z J, MAO Y F, HA S, et al. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis[J]. Plant Cell Reports, 2016, 35(7): 1519-1533.
DOI URL |
[5] |
JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821.
DOI URL |
[6] | KIM Y G, CHA J, CHANDRASEGARAN S. Hybrid restriction enzymes: zinc finger fusions to FokⅠ cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(3): 1156-1160. |
[7] |
CHRISTIAN M, CERMAK T, DOYLE E L, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757-761.
DOI URL |
[8] | KIM S, LEE M J, KIM H, et al. Preassembled zinc-finger arrays for rapid construction of ZFNs[J]. Nature Methods, 2011, 8(1): 7. |
[9] |
PETERSEN B, NIEMANN H. Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN)[J]. Chromosome Research, 2015, 23(1): 7-15.
DOI URL |
[10] |
LI T, HUANG S, ZHAO X F, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes[J]. Nucleic Acids Research, 2011, 39(14): 6315-6325.
DOI URL |
[11] |
MILLER J C, TAN S Y, QIAO G J, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2): 143-148.
DOI URL |
[12] |
BOCHJ, BONASU. Xanthomonas AvrBs3 family-type Ⅲ effectors: discovery and function[J]. Annual Review of Phytopathology, 2010, 48: 419-436.
DOI URL |
[13] | 方锐, 畅飞, 孙照霖, 等. CRISPR/Cas9介导的基因组定点编辑技术[J]. 生物化学与生物物理进展, 2013, 40(8): 691-702. |
FANG R, CHANG F, SUN Z L, et al. New method of genome editing derived from CRISPR/Cas9[J]. Progress in Biochemistry and Biophysics, 2013, 40(8): 691-702. (in Chinese with English abstract) | |
[14] |
MUSSOLINO C, CATHOMEN T. RNA guides genome engineering[J]. Nature Biotechnology, 2013, 31(3): 208-209.
DOI URL |
[15] |
GUPTA R M, MUSUNURU K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9[J]. The Journal of Clinical Investigation, 2014, 124(10): 4154-4161.
DOI URL |
[16] | 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 38-49. |
LIU Y G, LI G S, ZHANG Y L, et al. Current advances on CRISPR/Cas genome editing technologies in plants[J]. Journal of South China Agricultural University, 2019, 40(5): 38-49. (in Chinese with English abstract) | |
[17] |
UDDIN F, RUDIN C M, SEN T. CRISPR gene therapy: applications, limitations, and implications for the future[J]. Frontiers in Oncology, 2020, 10: 1387.
DOI URL |
[18] |
KLEINSTIVER B P, PREW M S, TSAI S Q, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-485.
DOI URL |
[19] | GAO Y B, ZHANG Y, ZHANG D, et al. Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(7): 2275-2280. |
[20] |
CHEN K L, WANG Y P, ZHANG R, et al. CRISPR/Cas genome editing and precision plant breeding in agriculture[J]. Annual Review of Plant Biology, 2019, 70: 667-697.
DOI URL |
[21] |
FIAZ S, AHMAD S, NOOR M A, et al. Applications of the CRISPR/Cas9 system for rice grain quality improvement: perspectives and opportunities[J]. International Journal of Molecular Sciences, 2019, 20(4): 888.
DOI URL |
[22] | ASHOKKUMAR S, JAGANATHAN D, RAMANATHAN V, et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing[J]. PLoS One, 2020, 15(8): e0237018. |
[23] |
ZHANG B, YANG X, YANG C P, et al. Exploiting the CRISPR/Cas9 system for targeted genome mutagenesis in Petunia[J]. Scientific Reports, 2016, 6: 20315.
DOI URL |
[24] |
YANG Y, ZHU K Y, LI H L, et al. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development[J]. Plant Biotechnology Journal, 2018, 16(7): 1322-1335.
DOI URL |
[25] |
ZHANG Y, LIANG Z, ZONG Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA[J]. Nature Communications, 2016, 7: 12617.
DOI URL |
[26] |
FENG C, SU H D, BAI H, et al. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize[J]. Plant Biotechnology Journal, 2018, 16(11): 1848-1857.
DOI URL |
[27] |
CURTIN S J, XIONG Y, MICHNO J M, et al. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula[J]. Plant Biotechnology Journal, 2018, 16(6): 1125-1137.
DOI URL |
[28] |
SINGH S K, KUMAR V, SRINIVASAN R, et al. The TRAF mediated gametogenesis progression (TRAMGaP) gene is required for megaspore mother cell specification and gametophyte development[J]. Plant Physiology, 2017, 175(3): 1220-1237.
DOI URL |
[29] |
FENG Z Y, ZHANG B T, DING W N, et al. Efficient genome editing in plants using a CRISPR/Cassystem[J]. Cell Research, 2013, 23(10): 1229-1232.
DOI URL |
[30] |
ZHANG H, ZHANG J S, WEI P L, et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation[J]. Plant Biotechnology Journal, 2014, 12(6): 797-807.
DOI URL |
[31] |
SHAN Q W, WANG Y P, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cassystem[J]. Nature Biotechnology, 2013, 31(8): 686-688.
DOI URL |
[32] |
WANG Y P, CHENG X, SHAN Q W, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9): 947-951.
DOI URL |
[33] | WANG F J, WANG C L, LIU P Q, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016, 11(4): e0154027. |
[34] |
NEKRASOV V, WANG C M, WIN J, et al. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion[J]. Scientific Reports, 2017, 7(1): 482.
DOI URL |
[35] |
ORTIGOSA A, GIMENEZ-IBANEZS, LEONHARDTN, et al. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2[J]. Plant Biotechnology Journal, 2019, 17(3): 665-673.
DOI URL |
[36] | LI M R, LI XX, ZHOU Z J, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Frontiers in Plant Science, 2016, 7: 377. |
[37] |
SYAHARIZA Z A, SAR S, HASJIM J, et al. The importance of amylose and amylopectin fine structures for starch digestibility in cooked rice grains[J]. Food Chemistry, 2013, 136(2): 742-749.
DOI URL |
[38] |
WANG Y X, LIU X Q, ZHENG XX, et al. Creation of aromatic maize by CRISPR/Cas[J]. Journal of Integrative Plant Biology, 2021, 63(9): 1664-1670.
DOI URL |
[39] |
ZHANG Y, LI D, ZHANG D B, et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits[J]. The Plant Journal: for Cell and Molecular Biology, 2018, 94(5): 857-866.
DOI URL |
[40] |
JIANG W Z, HENRY I M, LYNAGH P G, et al. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing[J]. Plant Biotechnology Journal, 2017, 15(5): 648-657.
DOI URL |
[41] | 郑怀国, 赵静娟, 秦晓婧, 等. 全球作物种业发展概况及对我国种业发展的战略思考[J]. 中国工程科学, 2021, 23(4):45-55. |
ZHENG H G, ZHAO J J, QIN X J, et al. Overview of the global crop seed industry and strategic thinking on its development in China[J]. Strategic Study of CAE, 2021, 23(4):45-55. | |
[42] | 林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4):405-417. |
LIN M. The development course and industrialization countermeasure of agricultural biological breeding technology[J]. Current Biotechnology, 2021, 11(4):405-417. | |
[43] |
WALTON R T, CHRISTIE K A, WHITTAKER M N, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368(6488): 290-296.
DOI URL |
[44] |
谭晓菁, 王忠华, 吴月燕, 等. 基因编辑技术在水稻抗病基因与育种研究中的应用进展[J]. 浙江农业学报, 2021, 33(10): 1982-1990.
DOI |
TAN X J, WANG Z H, WU Y Y, et al. Application progress of gene editing techniques in rice disease-resistant genes and breeding research[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1982-1990. (in Chinese with English abstract) | |
[45] |
MA X L, ZHANG Q Y, ZHU Q L, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant, 2015, 8(8): 1274-1284.
DOI URL |
[46] |
LI J Y, SUN Y W, DU J L, et al. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 526-529.
DOI URL |
[47] |
LU Y M, ZHU J K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system[J]. Molecular Plant, 2017, 10(3): 523-525.
DOI URL |
[48] |
REN B, YAN F, KUANG Y J, et al. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant[J]. Molecular Plant, 2018, 11(4): 623-626.
DOI URL |
[49] |
FANG Y, KUANG Y J, REN B, et al. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice[J]. Molecular Plant, 2018, 11(4): 631-634.
DOI URL |
[50] |
MORENO-MATEOS M A, VEJNAR C E, BEAUDOIN J D, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo[J]. Nature Methods, 2015, 12(10): 982-988.
DOI URL |
[51] |
WANG Z P, XING H L, DONG L, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation[J]. Genome Biology, 2015, 16(1): 144.
DOI URL |
[52] |
HYUN Y, KIM J, CHO S W, et al. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles[J]. Planta, 2015, 241(1): 271-284.
DOI URL |
[53] |
DOENCH J G, HARTENIAN E, GRAHAM D B, et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation[J]. Nature Biotechnology, 2014, 32(12): 1262-1267.
DOI URL |
[54] | XIE K B, MINKENBERG B, YANG Y N. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3570-3575. |
[55] |
VARSHNEY G K, ZHANG S Y, PEI W H, et al. CRISPRz: a database of zebrafish validated sgRNAs[J]. Nucleic Acids Research, 2015, 44(D1): D822-D826.
DOI URL |
[56] |
XU H, XIAO T F, CHEN C H, et al. Sequence determinants of improved CRISPR sgRNA design[J]. Genome Research, 2015, 25(8): 1147-1157.
DOI URL |
[57] |
WONG N, LIU W J, WANG X W. WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system[J]. Genome Biology, 2015, 16: 218.
DOI URL |
[58] |
DOENCH J G, FUSI N, SULLENDER M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9[J]. Nature Biotechnology, 2016, 34(2): 184-191.
DOI URL |
[59] |
GLOBUS R, QIMRON U. A technological and regulatory outlook on CRISPR crop editing[J]. Journal of Cellular Biochemistry, 2018, 119(2): 1291-1298.
DOI URL |
[60] | United States Department of Agriculture. Importation, Interstate movement, and environmental release of certain genetically engineered organisms[J]. Federal Register, 2017, 82:51582-51583. |
[61] | 王慧媛, 范月蕾, 褚鑫, 等. CRISPR基因编辑技术发展态势分析[J]. 生命科学, 2018, 30(9): 1019-1029. |
WANG H Y, FAN Y L, CHU X, et al. Trends and development analysis of genome editing technology focusd on CRISPR[J]. Chinese Bulletin of Life Sciences, 2018, 30(9): 1019-1029. (in Chinese with English abstract) | |
[62] | United States Department of Agriculture. France: agricultural biotechnology annual[EB/OL].(2021-01-14) [2021-11-01]. https://www.fas.usda.gov/data/france-agricultural-biotechnology-annual-4. |
[63] |
RICROCH A E, AMMANN K, KUNTZ M. Editing EU legislation to fit plant genome editing[J]. EMBO Reports, 2016, 17(10): 1365-1369.
DOI URL |
[64] | United States Department of Agriculture. United Kingdom: agricultural biotechnology annual[EB/OL]. (2020-12-22) [2021-11-01]. https://www.fas.usda.gov/data/united-kingdom-agricultural-biotechnology-annual. |
[65] | 姜涛. 生物安全风险的刑法规制[J]. 中国刑事法杂志, 2020(4): 52-74. |
JIANG T. Criminal regulation on biosafety risk[J]. Criminal Science, 2020(4): 52-74. (in Chinese) | |
[66] | NORMILE D. Gene-edited foods are safe, Japanese panel concludes[J]. Science, 2019. |
[67] |
黄耀辉, 焦悦, 付仲文. 日本转基因作物安全管理制度概况及进展[J]. 生物技术通报, 2021, 37(3): 99-106.
DOI |
HUANG Y H, JIAO Y, FU Z W. Overview and progress of Japan safety management system of genetically modified crops[J]. Biotechnology Bulletin, 2021, 37(3): 99-106. (in Chinese with English abstract) | |
[68] | 康国章, 李鸽子, 许海霞. 我国作物转基因技术的发展与现状[J]. 现代农业科技, 2017(22): 27-29. |
KANG G Z, LI G Z, XU H X. Development and status of transgenic technology in China[J]. Modern Agricultural Science and Technology, 2017(22): 27-29. (in Chinese with English abstract) | |
[69] |
GORDON D R, JAFFE G, DOANE M, et al. Responsible governance of gene editing in agriculture and the environment[J]. Nature Biotechnology, 2021, 39(9): 1055-1057.
DOI URL |
[70] |
WOO J W, KIM J, KWON S I, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleo proteins[J]. Nature Biotechnology, 2015, 33(11): 1162-1164.
DOI URL |
[1] | YUAN Wenxia, WANG Xuming, LI Dongyue, ZHOU Jie, YAN Chengqi, CHEN Jianping. Application of the technology of CRISPR/Cas9 edit rice gene [J]. , 2017, 29(5): 685-693. |
[2] | SHEN Chunxiu. CRISPR/Cas9 editing and expression analysis of LOC_Os10g05490 in rice under cold stress [J]. , 2017, 29(2): 177-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||