Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (9): 2043-2054.DOI: 10.3969/j.issn.1004-1524.2022.09.23
• Agricultural Economy and Development • Previous Articles Next Articles
YIN Xiyang(), CHEN Yixuan, LI Dongmei(
), YU Xi
Received:
2021-10-05
Online:
2022-09-25
Published:
2022-09-30
Contact:
LI Dongmei
CLC Number:
YIN Xiyang, CHEN Yixuan, LI Dongmei, YU Xi. Evaluation and spatiotemporal evolution of agricultural supply quality in China in 2003-2019[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2043-2054.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.09.23
维度层 Dimension | 要素层 Element | 指标层 Index | 度量方法 Measurement | 属性 Attribute | ||
---|---|---|---|---|---|---|
A1:供给要素质量 Quality of supply factor | B1:要素供给数量 Factor supply quantity | C1:单位面积农机总动力 Total power of agricultural machinery per unit area | 农业机械总动力/耕地面积 Total power of agricultural machinery/cultivated land area | + | ||
C2:人均耕地面积 Per capita cultivated land area | 耕地面积/乡村人口数 Cultivated land area/rural population | + | ||||
C3:单位面积财政支农支出 Financial expenditure for agriculture per unit area | 财政支农支出/耕地面积 Financial expenditure for agriculture/cultivated land area | + | ||||
C4:单位面积农业用水量 Agricultural water consumption per unit area | 农业用水量/耕地面积 Agricultural water consumption/cultivated land area | + | ||||
C5:单位面积农业劳动力数量 Number of agricultural labor force per unit area | 第一产业从业人员数/耕地面积 Number of employees in the primary industry/cultivated land area | + | ||||
B2:要素供给质量 Factor supply quality | C6:科研投入强度 Scientific research investment intensity | 科技支出/财政总支出 Science and technology expenditure/total financial expenditure | + | |||
C7:劳动者受教育程度 Education level of labor force | 高中及以上学历劳动力占比 Proportion of labor force with high school and above degree | + | ||||
A2:供给效率质量 Quality of supply efficiency | B3:要素产出效率 Factor output efficiency | C8:劳动生产率 Labor productivity | 农林牧渔总产值/第一产业从业人员数 Total output of agriculture, forestry, animal husbandry and fishery/number of employees in the primary industry | + | ||
C9:土地生产率 Land productivity | 农林牧渔总产值/耕地面积 Total output of agriculture, forestry, animal husbandry and fishery/cultivated land area | + | ||||
C10:农机生产率 Agricultural machinery productivity | 农林牧渔总产值/农业机械总动力 Total output of agriculture, forestry, animal husbandry and fishery/total power of agricultural machinery | + | ||||
B4:要素利用效率 Factor utilization efficiency | C11:复种指数 Multiple crop index | 农作物播种面积/耕地面积 Crop sown area/cultivated land area | + | |||
C12:有效灌溉指数 Effective irrigation index | 有效灌溉面积/耕地面积 Effective irrigation area/cultivated land area | + | ||||
A3:供给结构质量 Quality of supply structure | B5:内部结构协调 水平 Internal structure | C13:产业结构调整指数 Industrial structure adjustment index | 1-农业产值/农林牧渔总产值 1-agricultural output/total output of agriculture, forestry, animal husbandry and fishery | + | ||
coordination level | C14:种植结构多元化指数 Planting structure diversity index | 1-粮食播种面积/农作物播种面积 1-grain sown area/crop sown area | + | |||
B6:外部结构协调 水平 External structure coordination level | C15:产业融合指数 Industrial integration index | 农林牧渔服务业总产值/农林牧渔业总产值 Output of agriculture, forestry, animal husbandry and fishery service/total output of agriculture, forestry, animal husbandry and fishery | + | |||
C16:乡村非农就业占比 Proportion of rural non-agricultural employment | 1-第一产业从业人员数/乡村劳动力数量 1-number of employees in the primary industry/number of rural labor force | + | ||||
A4:供给绿色质量 Quality of supply “green” | B7:资源减量水平 Resource reduction level | C17:农药使用强度 Pesticide utilization intensity | 农药使用量/耕地面积 Pesticide usage/cultivated land area | - | ||
C18:化肥使用强度 Chemical fertilizer utilization intensity | 化肥施用量/耕地面积 Fertilizer usage/cultivated land area | - | ||||
C19:农膜使用强度 Agro-film utilization intensity | 农膜使用量/耕地面积 Agro-film usage/cultivated land area | - | ||||
B8:资源利用水平 Resource utilization level | C20:万元农业GDP电耗 Electricity consumption per 10 000 yuan agricultural GDP | 农村用电量/农林牧渔总产值 Rural electricity consumption/total output of agriculture, forestry, animal husbandry and fishery | - | |||
C21:万元农业GDP水耗 Water consumption per 10 000 yuan agricultural GDP | 农业用水量/农林牧渔总产值 Agricultural water consumption/total output of agriculture, forestry, animal husbandry and fishery | - | ||||
A5:供给效益质量 Quality of supply benefit | B9:经济效益 Economic benefit | C22:农林牧渔总产值 Total output of agriculture, forestry, animal husbandry and fishery | 农林牧渔总产值 Total output of agriculture, forestry, animal husbandry and fishery | + | ||
C23:人均粮食产量 Grain output per capita | 粮食产量/乡村人口数 Grain output/rural population | + | ||||
C24:人均肉蛋奶鱼产量 Meat, egg, milk and fish output per capita | 肉蛋奶鱼产量/乡村人口数 Meat, egg, milk and fish output/rural population | + | ||||
B10:社会效益 Social benefit | C25:农村居民恩格尔系数 Engel coefficient of rural residents | 农村居民食物支出/消费总支出 Food expenditure/total consumption expenditure of rural residents | - | |||
C26:农村居民人均可支配收入 Per capita disposable income of rural residents | 农村居民人均可支配收入 Per capita disposable income of rural residents | + | ||||
B11:生态效益 Ecological benefit | C27:森林覆盖率 Forest coverage | 森林面积/土地总面积 Forest area/total land area | + | |||
C28:造林总面积 Total afforestation area | 造林总面积 Total afforestation area | + |
Table 1 Evaluation index system of agricultural supply quality
维度层 Dimension | 要素层 Element | 指标层 Index | 度量方法 Measurement | 属性 Attribute | ||
---|---|---|---|---|---|---|
A1:供给要素质量 Quality of supply factor | B1:要素供给数量 Factor supply quantity | C1:单位面积农机总动力 Total power of agricultural machinery per unit area | 农业机械总动力/耕地面积 Total power of agricultural machinery/cultivated land area | + | ||
C2:人均耕地面积 Per capita cultivated land area | 耕地面积/乡村人口数 Cultivated land area/rural population | + | ||||
C3:单位面积财政支农支出 Financial expenditure for agriculture per unit area | 财政支农支出/耕地面积 Financial expenditure for agriculture/cultivated land area | + | ||||
C4:单位面积农业用水量 Agricultural water consumption per unit area | 农业用水量/耕地面积 Agricultural water consumption/cultivated land area | + | ||||
C5:单位面积农业劳动力数量 Number of agricultural labor force per unit area | 第一产业从业人员数/耕地面积 Number of employees in the primary industry/cultivated land area | + | ||||
B2:要素供给质量 Factor supply quality | C6:科研投入强度 Scientific research investment intensity | 科技支出/财政总支出 Science and technology expenditure/total financial expenditure | + | |||
C7:劳动者受教育程度 Education level of labor force | 高中及以上学历劳动力占比 Proportion of labor force with high school and above degree | + | ||||
A2:供给效率质量 Quality of supply efficiency | B3:要素产出效率 Factor output efficiency | C8:劳动生产率 Labor productivity | 农林牧渔总产值/第一产业从业人员数 Total output of agriculture, forestry, animal husbandry and fishery/number of employees in the primary industry | + | ||
C9:土地生产率 Land productivity | 农林牧渔总产值/耕地面积 Total output of agriculture, forestry, animal husbandry and fishery/cultivated land area | + | ||||
C10:农机生产率 Agricultural machinery productivity | 农林牧渔总产值/农业机械总动力 Total output of agriculture, forestry, animal husbandry and fishery/total power of agricultural machinery | + | ||||
B4:要素利用效率 Factor utilization efficiency | C11:复种指数 Multiple crop index | 农作物播种面积/耕地面积 Crop sown area/cultivated land area | + | |||
C12:有效灌溉指数 Effective irrigation index | 有效灌溉面积/耕地面积 Effective irrigation area/cultivated land area | + | ||||
A3:供给结构质量 Quality of supply structure | B5:内部结构协调 水平 Internal structure | C13:产业结构调整指数 Industrial structure adjustment index | 1-农业产值/农林牧渔总产值 1-agricultural output/total output of agriculture, forestry, animal husbandry and fishery | + | ||
coordination level | C14:种植结构多元化指数 Planting structure diversity index | 1-粮食播种面积/农作物播种面积 1-grain sown area/crop sown area | + | |||
B6:外部结构协调 水平 External structure coordination level | C15:产业融合指数 Industrial integration index | 农林牧渔服务业总产值/农林牧渔业总产值 Output of agriculture, forestry, animal husbandry and fishery service/total output of agriculture, forestry, animal husbandry and fishery | + | |||
C16:乡村非农就业占比 Proportion of rural non-agricultural employment | 1-第一产业从业人员数/乡村劳动力数量 1-number of employees in the primary industry/number of rural labor force | + | ||||
A4:供给绿色质量 Quality of supply “green” | B7:资源减量水平 Resource reduction level | C17:农药使用强度 Pesticide utilization intensity | 农药使用量/耕地面积 Pesticide usage/cultivated land area | - | ||
C18:化肥使用强度 Chemical fertilizer utilization intensity | 化肥施用量/耕地面积 Fertilizer usage/cultivated land area | - | ||||
C19:农膜使用强度 Agro-film utilization intensity | 农膜使用量/耕地面积 Agro-film usage/cultivated land area | - | ||||
B8:资源利用水平 Resource utilization level | C20:万元农业GDP电耗 Electricity consumption per 10 000 yuan agricultural GDP | 农村用电量/农林牧渔总产值 Rural electricity consumption/total output of agriculture, forestry, animal husbandry and fishery | - | |||
C21:万元农业GDP水耗 Water consumption per 10 000 yuan agricultural GDP | 农业用水量/农林牧渔总产值 Agricultural water consumption/total output of agriculture, forestry, animal husbandry and fishery | - | ||||
A5:供给效益质量 Quality of supply benefit | B9:经济效益 Economic benefit | C22:农林牧渔总产值 Total output of agriculture, forestry, animal husbandry and fishery | 农林牧渔总产值 Total output of agriculture, forestry, animal husbandry and fishery | + | ||
C23:人均粮食产量 Grain output per capita | 粮食产量/乡村人口数 Grain output/rural population | + | ||||
C24:人均肉蛋奶鱼产量 Meat, egg, milk and fish output per capita | 肉蛋奶鱼产量/乡村人口数 Meat, egg, milk and fish output/rural population | + | ||||
B10:社会效益 Social benefit | C25:农村居民恩格尔系数 Engel coefficient of rural residents | 农村居民食物支出/消费总支出 Food expenditure/total consumption expenditure of rural residents | - | |||
C26:农村居民人均可支配收入 Per capita disposable income of rural residents | 农村居民人均可支配收入 Per capita disposable income of rural residents | + | ||||
B11:生态效益 Ecological benefit | C27:森林覆盖率 Forest coverage | 森林面积/土地总面积 Forest area/total land area | + | |||
C28:造林总面积 Total afforestation area | 造林总面积 Total afforestation area | + |
维度层 Dimension | 要素层 Element | 指标层 Index | 权重 Weight | 排名 Ranking |
---|---|---|---|---|
A1(0.430 4) | B1(0.367 0) | C1 | 0.032 2 | 14 |
C2 | 0.062 2 | 3 | ||
C3 | 0.193 1 | 1 | ||
C4 | 0.054 2 | 5 | ||
C5 | 0.025 3 | 17 | ||
B2(0.063 4) | C6 | 0.045 4 | 9 | |
C7 | 0.018 0 | 18 | ||
A2(0.169 7) | B3(0.125 9) | C8 | 0.044 6 | 10 |
C9 | 0.045 5 | 8 | ||
C10 | 0.035 8 | 12 | ||
B4(0.043 8) | C11 | 0.016 0 | 19 | |
C12 | 0.027 8 | 16 | ||
A3(0.070 1) | B5(0.028 5) | C13 | 0.013 6 | 21 |
C14 | 0.014 9 | 20 | ||
B6(0.041 6) | C15 | 0.034 6 | 13 | |
C16 | 0.007 0 | 22 | ||
A4(0.016 4) | B7(0.012 4) | C17 | 0.005 4 | 24 |
C18 | 0.002 9 | 26 | ||
C19 | 0.004 1 | 25 | ||
B8(0.004 0) | C20 | 0.001 4 | 28 | |
C21 | 0.002 6 | 27 | ||
A5(0.313 4) | B9(0.142 7) | C22 | 0.040 4 | 11 |
C23 | 0.055 7 | 4 | ||
C24 | 0.046 6 | 7 | ||
B10(0.056 9) | C25 | 0.006 6 | 23 | |
C26 | 0.050 3 | 6 | ||
B11(0.113 8) | C27 | 0.032 0 | 15 | |
C28 | 0.081 8 | 2 |
Table 2 Index weight and ranking of China’s agricultural supply quality evaluation system
维度层 Dimension | 要素层 Element | 指标层 Index | 权重 Weight | 排名 Ranking |
---|---|---|---|---|
A1(0.430 4) | B1(0.367 0) | C1 | 0.032 2 | 14 |
C2 | 0.062 2 | 3 | ||
C3 | 0.193 1 | 1 | ||
C4 | 0.054 2 | 5 | ||
C5 | 0.025 3 | 17 | ||
B2(0.063 4) | C6 | 0.045 4 | 9 | |
C7 | 0.018 0 | 18 | ||
A2(0.169 7) | B3(0.125 9) | C8 | 0.044 6 | 10 |
C9 | 0.045 5 | 8 | ||
C10 | 0.035 8 | 12 | ||
B4(0.043 8) | C11 | 0.016 0 | 19 | |
C12 | 0.027 8 | 16 | ||
A3(0.070 1) | B5(0.028 5) | C13 | 0.013 6 | 21 |
C14 | 0.014 9 | 20 | ||
B6(0.041 6) | C15 | 0.034 6 | 13 | |
C16 | 0.007 0 | 22 | ||
A4(0.016 4) | B7(0.012 4) | C17 | 0.005 4 | 24 |
C18 | 0.002 9 | 26 | ||
C19 | 0.004 1 | 25 | ||
B8(0.004 0) | C20 | 0.001 4 | 28 | |
C21 | 0.002 6 | 27 | ||
A5(0.313 4) | B9(0.142 7) | C22 | 0.040 4 | 11 |
C23 | 0.055 7 | 4 | ||
C24 | 0.046 6 | 7 | ||
B10(0.056 9) | C25 | 0.006 6 | 23 | |
C26 | 0.050 3 | 6 | ||
B11(0.113 8) | C27 | 0.032 0 | 15 | |
C28 | 0.081 8 | 2 |
年份 Year | 供给要素质量 Quality of supply factor | 供给效率质量 Quality of supply efficiency | 供给结构质量 Quality of supply structure | 供给绿色质量 Quality of supply “green” | 供给效益质量 Quality of supply benefit | 综合得分 Comprehensive score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | ||
2003 | 0.047 8 | 0.308 8 | 0.024 9 | 0.160 9 | 0.027 8 | 0.179 6 | 0.013 9 | 0.089 8 | 0.040 4 | 0.261 0 | 0.154 8 |
2004 | 0.049 0 | 0.317 6 | 0.027 2 | 0.176 3 | 0.026 7 | 0.173 0 | 0.013 9 | 0.090 1 | 0.037 5 | 0.243 0 | 0.154 3 |
2005 | 0.049 6 | 0.318 8 | 0.028 1 | 0.180 6 | 0.026 8 | 0.172 2 | 0.013 8 | 0.088 7 | 0.037 3 | 0.239 7 | 0.155 6 |
2006 | 0.052 5 | 0.319 5 | 0.029 9 | 0.182 0 | 0.024 9 | 0.151 6 | 0.013 8 | 0.084 0 | 0.043 2 | 0.262 9 | 0.164 3 |
2007 | 0.062 6 | 0.338 4 | 0.035 2 | 0.190 3 | 0.027 8 | 0.150 3 | 0.013 5 | 0.073 0 | 0.045 9 | 0.248 1 | 0.185 0 |
2008 | 0.064 5 | 0.325 6 | 0.041 4 | 0.209 0 | 0.026 8 | 0.135 3 | 0.013 4 | 0.067 6 | 0.052 0 | 0.262 5 | 0.198 1 |
2009 | 0.066 0 | 0.321 0 | 0.040 9 | 0.198 9 | 0.028 2 | 0.137 2 | 0.013 3 | 0.064 7 | 0.057 2 | 0.278 2 | 0.205 6 |
2010 | 0.074 2 | 0.309 9 | 0.049 5 | 0.206 8 | 0.025 7 | 0.107 4 | 0.013 3 | 0.055 6 | 0.076 7 | 0.320 4 | 0.239 4 |
2011 | 0.072 0 | 0.315 4 | 0.050 1 | 0.219 4 | 0.027 2 | 0.119 1 | 0.013 3 | 0.058 3 | 0.065 7 | 0.287 8 | 0.228 3 |
2012 | 0.074 8 | 0.313 4 | 0.054 0 | 0.226 2 | 0.026 9 | 0.112 7 | 0.013 3 | 0.055 7 | 0.069 7 | 0.292 0 | 0.238 7 |
2013 | 0.077 6 | 0.309 7 | 0.057 2 | 0.228 3 | 0.026 8 | 0.106 9 | 0.013 2 | 0.052 7 | 0.075 8 | 0.302 5 | 0.250 6 |
2014 | 0.079 2 | 0.308 5 | 0.057 8 | 0.225 2 | 0.027 1 | 0.105 6 | 0.013 4 | 0.052 2 | 0.079 2 | 0.308 5 | 0.256 7 |
2015 | 0.082 2 | 0.306 1 | 0.060 1 | 0.223 8 | 0.027 5 | 0.102 4 | 0.013 4 | 0.049 9 | 0.085 3 | 0.317 7 | 0.268 5 |
2016 | 0.082 2 | 0.298 6 | 0.063 4 | 0.230 3 | 0.027 9 | 0.101 3 | 0.013 5 | 0.049 0 | 0.088 3 | 0.320 7 | 0.275 3 |
2017 | 0.084 6 | 0.300 5 | 0.062 1 | 0.220 6 | 0.029 7 | 0.105 5 | 0.013 6 | 0.048 3 | 0.091 5 | 0.325 0 | 0.281 5 |
2018 | 0.086 7 | 0.297 0 | 0.065 3 | 0.223 7 | 0.030 5 | 0.104 5 | 0.013 8 | 0.047 3 | 0.095 6 | 0.327 5 | 0.291 9 |
2019 | 0.088 9 | 0.293 3 | 0.068 7 | 0.226 7 | 0.031 2 | 0.102 9 | 0.013 9 | 0.045 9 | 0.100 4 | 0.331 2 | 0.303 1 |
Table 3 Score of China’s agricultural supply quality from 2003 to 2019
年份 Year | 供给要素质量 Quality of supply factor | 供给效率质量 Quality of supply efficiency | 供给结构质量 Quality of supply structure | 供给绿色质量 Quality of supply “green” | 供给效益质量 Quality of supply benefit | 综合得分 Comprehensive score | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | 得分 Score | 贡献率 Contribution rate | ||
2003 | 0.047 8 | 0.308 8 | 0.024 9 | 0.160 9 | 0.027 8 | 0.179 6 | 0.013 9 | 0.089 8 | 0.040 4 | 0.261 0 | 0.154 8 |
2004 | 0.049 0 | 0.317 6 | 0.027 2 | 0.176 3 | 0.026 7 | 0.173 0 | 0.013 9 | 0.090 1 | 0.037 5 | 0.243 0 | 0.154 3 |
2005 | 0.049 6 | 0.318 8 | 0.028 1 | 0.180 6 | 0.026 8 | 0.172 2 | 0.013 8 | 0.088 7 | 0.037 3 | 0.239 7 | 0.155 6 |
2006 | 0.052 5 | 0.319 5 | 0.029 9 | 0.182 0 | 0.024 9 | 0.151 6 | 0.013 8 | 0.084 0 | 0.043 2 | 0.262 9 | 0.164 3 |
2007 | 0.062 6 | 0.338 4 | 0.035 2 | 0.190 3 | 0.027 8 | 0.150 3 | 0.013 5 | 0.073 0 | 0.045 9 | 0.248 1 | 0.185 0 |
2008 | 0.064 5 | 0.325 6 | 0.041 4 | 0.209 0 | 0.026 8 | 0.135 3 | 0.013 4 | 0.067 6 | 0.052 0 | 0.262 5 | 0.198 1 |
2009 | 0.066 0 | 0.321 0 | 0.040 9 | 0.198 9 | 0.028 2 | 0.137 2 | 0.013 3 | 0.064 7 | 0.057 2 | 0.278 2 | 0.205 6 |
2010 | 0.074 2 | 0.309 9 | 0.049 5 | 0.206 8 | 0.025 7 | 0.107 4 | 0.013 3 | 0.055 6 | 0.076 7 | 0.320 4 | 0.239 4 |
2011 | 0.072 0 | 0.315 4 | 0.050 1 | 0.219 4 | 0.027 2 | 0.119 1 | 0.013 3 | 0.058 3 | 0.065 7 | 0.287 8 | 0.228 3 |
2012 | 0.074 8 | 0.313 4 | 0.054 0 | 0.226 2 | 0.026 9 | 0.112 7 | 0.013 3 | 0.055 7 | 0.069 7 | 0.292 0 | 0.238 7 |
2013 | 0.077 6 | 0.309 7 | 0.057 2 | 0.228 3 | 0.026 8 | 0.106 9 | 0.013 2 | 0.052 7 | 0.075 8 | 0.302 5 | 0.250 6 |
2014 | 0.079 2 | 0.308 5 | 0.057 8 | 0.225 2 | 0.027 1 | 0.105 6 | 0.013 4 | 0.052 2 | 0.079 2 | 0.308 5 | 0.256 7 |
2015 | 0.082 2 | 0.306 1 | 0.060 1 | 0.223 8 | 0.027 5 | 0.102 4 | 0.013 4 | 0.049 9 | 0.085 3 | 0.317 7 | 0.268 5 |
2016 | 0.082 2 | 0.298 6 | 0.063 4 | 0.230 3 | 0.027 9 | 0.101 3 | 0.013 5 | 0.049 0 | 0.088 3 | 0.320 7 | 0.275 3 |
2017 | 0.084 6 | 0.300 5 | 0.062 1 | 0.220 6 | 0.029 7 | 0.105 5 | 0.013 6 | 0.048 3 | 0.091 5 | 0.325 0 | 0.281 5 |
2018 | 0.086 7 | 0.297 0 | 0.065 3 | 0.223 7 | 0.030 5 | 0.104 5 | 0.013 8 | 0.047 3 | 0.095 6 | 0.327 5 | 0.291 9 |
2019 | 0.088 9 | 0.293 3 | 0.068 7 | 0.226 7 | 0.031 2 | 0.102 9 | 0.013 9 | 0.045 9 | 0.100 4 | 0.331 2 | 0.303 1 |
年份 Year | 华北 North China | 华东 East China | 华中 Central China | 华南 South China | 西南 Southwest China | 西北 Northwest China | 东北 Northeast China |
---|---|---|---|---|---|---|---|
2003 | 0.169 3 | 0.169 6 | 0.152 9 | 0.168 5 | 0.117 1 | 0.154 9 | 0.147 2 |
2004 | 0.169 1 | 0.175 0 | 0.156 4 | 0.168 7 | 0.114 9 | 0.143 5 | 0.148 9 |
2005 | 0.171 8 | 0.176 1 | 0.157 6 | 0.175 3 | 0.117 3 | 0.138 7 | 0.151 0 |
2006 | 0.181 9 | 0.188 9 | 0.164 5 | 0.184 0 | 0.127 5 | 0.138 7 | 0.161 9 |
2007 | 0.204 9 | 0.216 5 | 0.180 7 | 0.203 1 | 0.142 2 | 0.162 1 | 0.172 8 |
2008 | 0.220 5 | 0.229 7 | 0.194 0 | 0.217 2 | 0.153 6 | 0.173 6 | 0.186 7 |
2009 | 0.229 2 | 0.237 4 | 0.201 5 | 0.221 6 | 0.160 0 | 0.183 4 | 0.193 5 |
2010 | 0.263 8 | 0.254 3 | 0.222 7 | 0.243 3 | 0.181 6 | 0.243 9 | 0.265 2 |
2011 | 0.250 3 | 0.262 4 | 0.228 7 | 0.243 3 | 0.175 6 | 0.205 6 | 0.222 8 |
2012 | 0.261 8 | 0.271 3 | 0.239 5 | 0.256 5 | 0.182 9 | 0.214 3 | 0.239 1 |
2013 | 0.272 8 | 0.283 1 | 0.253 9 | 0.268 6 | 0.192 8 | 0.225 8 | 0.254 6 |
2014 | 0.275 7 | 0.297 8 | 0.258 3 | 0.283 6 | 0.194 3 | 0.224 7 | 0.257 4 |
2015 | 0.284 5 | 0.310 1 | 0.267 8 | 0.301 7 | 0.209 0 | 0.234 7 | 0.269 7 |
2016 | 0.287 3 | 0.317 6 | 0.273 2 | 0.317 6 | 0.216 9 | 0.243 3 | 0.267 7 |
2017 | 0.290 7 | 0.325 6 | 0.280 2 | 0.321 9 | 0.226 6 | 0.250 1 | 0.267 6 |
2018 | 0.297 6 | 0.340 3 | 0.292 5 | 0.334 5 | 0.234 3 | 0.262 0 | 0.273 0 |
2019 | 0.306 5 | 0.351 6 | 0.307 3 | 0.351 3 | 0.244 9 | 0.270 4 | 0.283 9 |
Table 4 Scores of agricultural supply quality in different regions
年份 Year | 华北 North China | 华东 East China | 华中 Central China | 华南 South China | 西南 Southwest China | 西北 Northwest China | 东北 Northeast China |
---|---|---|---|---|---|---|---|
2003 | 0.169 3 | 0.169 6 | 0.152 9 | 0.168 5 | 0.117 1 | 0.154 9 | 0.147 2 |
2004 | 0.169 1 | 0.175 0 | 0.156 4 | 0.168 7 | 0.114 9 | 0.143 5 | 0.148 9 |
2005 | 0.171 8 | 0.176 1 | 0.157 6 | 0.175 3 | 0.117 3 | 0.138 7 | 0.151 0 |
2006 | 0.181 9 | 0.188 9 | 0.164 5 | 0.184 0 | 0.127 5 | 0.138 7 | 0.161 9 |
2007 | 0.204 9 | 0.216 5 | 0.180 7 | 0.203 1 | 0.142 2 | 0.162 1 | 0.172 8 |
2008 | 0.220 5 | 0.229 7 | 0.194 0 | 0.217 2 | 0.153 6 | 0.173 6 | 0.186 7 |
2009 | 0.229 2 | 0.237 4 | 0.201 5 | 0.221 6 | 0.160 0 | 0.183 4 | 0.193 5 |
2010 | 0.263 8 | 0.254 3 | 0.222 7 | 0.243 3 | 0.181 6 | 0.243 9 | 0.265 2 |
2011 | 0.250 3 | 0.262 4 | 0.228 7 | 0.243 3 | 0.175 6 | 0.205 6 | 0.222 8 |
2012 | 0.261 8 | 0.271 3 | 0.239 5 | 0.256 5 | 0.182 9 | 0.214 3 | 0.239 1 |
2013 | 0.272 8 | 0.283 1 | 0.253 9 | 0.268 6 | 0.192 8 | 0.225 8 | 0.254 6 |
2014 | 0.275 7 | 0.297 8 | 0.258 3 | 0.283 6 | 0.194 3 | 0.224 7 | 0.257 4 |
2015 | 0.284 5 | 0.310 1 | 0.267 8 | 0.301 7 | 0.209 0 | 0.234 7 | 0.269 7 |
2016 | 0.287 3 | 0.317 6 | 0.273 2 | 0.317 6 | 0.216 9 | 0.243 3 | 0.267 7 |
2017 | 0.290 7 | 0.325 6 | 0.280 2 | 0.321 9 | 0.226 6 | 0.250 1 | 0.267 6 |
2018 | 0.297 6 | 0.340 3 | 0.292 5 | 0.334 5 | 0.234 3 | 0.262 0 | 0.273 0 |
2019 | 0.306 5 | 0.351 6 | 0.307 3 | 0.351 3 | 0.244 9 | 0.270 4 | 0.283 9 |
年份Year | Moran’s I | Z | P |
---|---|---|---|
2003 | 0.198** | 2.154 | 0.031 |
2004 | 0.275*** | 2.870 | 0.004 |
2005 | 0.282*** | 2.943 | 0.003 |
2006 | 0.349*** | 3.564 | 0.000 |
2007 | 0.262*** | 2.796 | 0.005 |
2008 | 0.207** | 2.288 | 0.022 |
2009 | 0.183** | 2.089 | 0.037 |
2010 | 0.141* | 1.668 | 0.095 |
2011 | 0.192** | 2.146 | 0.032 |
2012 | 0.180** | 2.029 | 0.043 |
2013 | 0.185** | 2.066 | 0.039 |
2014 | 0.227** | 2.507 | 0.012 |
2015 | 0.214** | 2.378 | 0.017 |
2016 | 0.207** | 2.330 | 0.020 |
2017 | 0.161* | 1.912 | 0.056 |
2018 | 0.162* | 1.948 | 0.051 |
2019 | 0.164* | 1.930 | 0.054 |
Table 5 Global Moran’s Ⅰ of China’s agricultural supply quality from 2003 to 2019
年份Year | Moran’s I | Z | P |
---|---|---|---|
2003 | 0.198** | 2.154 | 0.031 |
2004 | 0.275*** | 2.870 | 0.004 |
2005 | 0.282*** | 2.943 | 0.003 |
2006 | 0.349*** | 3.564 | 0.000 |
2007 | 0.262*** | 2.796 | 0.005 |
2008 | 0.207** | 2.288 | 0.022 |
2009 | 0.183** | 2.089 | 0.037 |
2010 | 0.141* | 1.668 | 0.095 |
2011 | 0.192** | 2.146 | 0.032 |
2012 | 0.180** | 2.029 | 0.043 |
2013 | 0.185** | 2.066 | 0.039 |
2014 | 0.227** | 2.507 | 0.012 |
2015 | 0.214** | 2.378 | 0.017 |
2016 | 0.207** | 2.330 | 0.020 |
2017 | 0.161* | 1.912 | 0.056 |
2018 | 0.162* | 1.948 | 0.051 |
2019 | 0.164* | 1.930 | 0.054 |
年份 Year | H-H | L-H | L-L | H-L |
---|---|---|---|---|
2003 | 北京Beijing、天津Tianjin、江苏Jiangsu、浙江Zhejiang、上海Shanghai、黑龙江Heilongjiang、河北Hebei、福建Fujian、江西Jiangxi、广东Guangdong | 吉林Jilin、辽宁Liaoning、山西Shanxi、安徽Anhui | 湖北Hubei、云南Yunnan、四川Sichuan、河南Henan、山东Shandong、广西Guangxi、重庆Chongqing、贵州Guizhou、甘肃Gansu、陕西Shaanxi、青海Qinghai、西藏Tibet | 内蒙古Inner Mongolia、湖南Hunan、新疆Xinjiang、宁夏Ningxia |
2009 | 天津Tianjin、江苏Jiangsu、上海Shanghai、黑龙江Heilongjiang、广东Guangdong、福建Fujian、浙江Zhejiang、江西Jiangxi | 吉林Jilin、辽宁Liaoning、河北Hebei、山西Shanxi、安徽Anhui | 湖北Hubei、河南Henan、云南Yunnan、四川Sichuan、广西Guangxi、重庆Chongqing、贵州Guizhou、宁夏Ningxia、陕西Shaanxi、甘肃Gansu、青海Qinghai、西藏Tibet | 北京Beijing、山东Shandong、内蒙古Inner Mongolia、湖南Hunan、新疆Xinjiang |
2015 | 天津Tianjin、辽宁Liaoning、江苏Jiangsu、上海Shanghai、黑龙江Heilongjiang、广东Guangdong、福建Fujian、浙江Zhejiang | 河北Hebei、山东Shandong、吉林Jilin、安徽Anhui、江西Jiangxi、广西Guangxi | 云南Yunnan、四川Sichuan、重庆Chongqing、河南Henan、贵州Guizhou、山西Shaanxi、陕西Shaanxi、甘肃Gansu、青海Qinghai、宁夏Ningxia、西藏Tibet | 北京Beijing、湖北Hubei、湖南Hunan、内蒙古Inner Mongolia、新疆Xinjiang |
2019 | 江苏Jiangsu、上海Shanghai、黑龙江Heilongjiang、广东Guangdong、福建Fujian、湖南Hunan、浙江Zhejiang | 天津Tianjin、河北Hebei、山东Shandong、吉林Jilin、江西Jiangxi、广西Guangxi、安徽Anhui | 辽宁Liaoning、云南Yunnan、贵州Guizhou、四川Sichuan、重庆Chongqing、河南Henan、山西Shanxi、陕西Shaanxi、甘肃Gansu、青海Qinghai、宁夏Ningxia、西藏Tibet | 北京Beijing、湖北Hubei、内蒙古Inner Mongolia、新疆Xinjiang |
Table 6 Distribution of local Moran’s I in provincial-level administrative regions from 2003 to 2019
年份 Year | H-H | L-H | L-L | H-L |
---|---|---|---|---|
2003 | 北京Beijing、天津Tianjin、江苏Jiangsu、浙江Zhejiang、上海Shanghai、黑龙江Heilongjiang、河北Hebei、福建Fujian、江西Jiangxi、广东Guangdong | 吉林Jilin、辽宁Liaoning、山西Shanxi、安徽Anhui | 湖北Hubei、云南Yunnan、四川Sichuan、河南Henan、山东Shandong、广西Guangxi、重庆Chongqing、贵州Guizhou、甘肃Gansu、陕西Shaanxi、青海Qinghai、西藏Tibet | 内蒙古Inner Mongolia、湖南Hunan、新疆Xinjiang、宁夏Ningxia |
2009 | 天津Tianjin、江苏Jiangsu、上海Shanghai、黑龙江Heilongjiang、广东Guangdong、福建Fujian、浙江Zhejiang、江西Jiangxi | 吉林Jilin、辽宁Liaoning、河北Hebei、山西Shanxi、安徽Anhui | 湖北Hubei、河南Henan、云南Yunnan、四川Sichuan、广西Guangxi、重庆Chongqing、贵州Guizhou、宁夏Ningxia、陕西Shaanxi、甘肃Gansu、青海Qinghai、西藏Tibet | 北京Beijing、山东Shandong、内蒙古Inner Mongolia、湖南Hunan、新疆Xinjiang |
2015 | 天津Tianjin、辽宁Liaoning、江苏Jiangsu、上海Shanghai、黑龙江Heilongjiang、广东Guangdong、福建Fujian、浙江Zhejiang | 河北Hebei、山东Shandong、吉林Jilin、安徽Anhui、江西Jiangxi、广西Guangxi | 云南Yunnan、四川Sichuan、重庆Chongqing、河南Henan、贵州Guizhou、山西Shaanxi、陕西Shaanxi、甘肃Gansu、青海Qinghai、宁夏Ningxia、西藏Tibet | 北京Beijing、湖北Hubei、湖南Hunan、内蒙古Inner Mongolia、新疆Xinjiang |
2019 | 江苏Jiangsu、上海Shanghai、黑龙江Heilongjiang、广东Guangdong、福建Fujian、湖南Hunan、浙江Zhejiang | 天津Tianjin、河北Hebei、山东Shandong、吉林Jilin、江西Jiangxi、广西Guangxi、安徽Anhui | 辽宁Liaoning、云南Yunnan、贵州Guizhou、四川Sichuan、重庆Chongqing、河南Henan、山西Shanxi、陕西Shaanxi、甘肃Gansu、青海Qinghai、宁夏Ningxia、西藏Tibet | 北京Beijing、湖北Hubei、内蒙古Inner Mongolia、新疆Xinjiang |
[1] | 涂圣伟. 我国农业供给结构失衡的根源与改革着力点[J]. 经济纵横, 2016(11): 108-113. |
TU S W. The root causes of China’s agricultural supply structure imbalance and the focus of reform[J]. Economic Review, 2016(11): 108-113. (in Chinese) | |
[2] | 张红宇. 牢牢掌握粮食安全主动权[J]. 农业经济问题, 2021, 42(1): 14-18. |
ZHANG H Y. Holding the initiative on food security firmly[J]. Issues in Agricultural Economy, 2021, 42(1): 14-18. (in Chinese with English abstract) | |
[3] | 罗必良. 农业供给侧改革的关键、难点与方向[J]. 农村经济, 2017(1): 1-10. |
LUO B L. Key points, difficulties and direction of agricultural supply side reform[J]. Rural Economy, 2017(1): 1-10. (in Chinese) | |
[4] | 和龙, 葛新权, 刘延平. 我国农业供给侧结构性改革: 机遇、挑战及对策[J]. 农村经济, 2016(7): 29-33. |
HE L, GE X Q, LIU Y P. China’s agricultural supply side structural reform: opportunities, challenges and countermeasures[J]. Rural Economy, 2016(7): 29-33. (in Chinese) | |
[5] | 王国敏, 常璇. 我国农业结构性矛盾与农业供给侧改革的着力点[J]. 理论探索, 2017(6): 100-106. |
WANG G M, CHANG X. Agricultural structural contradiction and focus of agricultural supply side reform in China[J]. Theoretical Exploration, 2017(6): 100-106. (in Chinese) | |
[6] | 黎新伍, 徐书彬. 中国农业供给结构失衡的测度及其空间特征研究[J]. 广东财经大学学报, 2020, 35(4): 87-102. |
LI X W, XU S B. On the measurement and spatial characteristics of China’s imbalance in agricultural supply structure[J]. Journal of Guangdong University of Finance & Economics, 2020, 35(4): 87-102. (in Chinese with English abstract) | |
[7] | 王敬尧, 王承禹. 国家治理、农地制度与农业供给侧结构性改革[J]. 政治学研究, 2020(3): 90-101. |
WANG J Y, WANG C Y. State governance, rural land system and structural reforms of agricultural supply side[J]. CASS Journal of Political Science, 2020(3): 90-101. (in Chinese with English abstract) | |
[8] | 黄建红. 农业供给侧结构性改革与基层政府职能转变[J]. 农村经济, 2020(10): 14-21. |
HUANG J H. Agricultural supply side structural reform and transformation of grass-roots government functions[J]. Rural Economy, 2020(10): 14-21. (in Chinese) | |
[9] | 黄祖辉, 傅琳琳, 李海涛. 我国农业供给侧结构调整: 历史回顾、问题实质与改革重点[J]. 南京农业大学学报(社会科学版), 2016, 16(6): 1-5. |
HUANG Z H, FU L L, LI H T. Supply-side structural reform of China’s agriculture: retrospect, problems and reforms[J]. Journal of Nanjing Agricultural University (Social Sciences Edition), 2016, 16(6): 1-5. (in Chinese with English abstract) | |
[10] | 陈锡文. 论农业供给侧结构性改革[J]. 中国农业大学学报(社会科学版), 2017, 34(2): 5-13. |
CHEN X W. On the structural reform of agricultural supply side[J]. China Agricultural University Journal of Social Sciences Edition, 2017, 34(2): 5-13. (in Chinese) | |
[11] | 姜长云. 科学理解农业供给侧结构性改革的深刻内涵[J]. 经济纵横, 2017(9): 24-29. |
JIANG C Y. How to scientifically understand the profound connotation of supply-side structural reforms in agriculture[J]. Economic Review, 2017(9): 24-29. (in Chinese with English abstract) | |
[12] | 翁鸣. 科学地认识农业供给侧结构性改革[J]. 农村经济, 2017(3): 1-5. |
WENG M Scientific understanding of agricultural supply side structural reform[J]. Rural Economy, 2017(3): 1-5. (in Chinese) | |
[13] | 陈文胜. 乡村振兴战略目标下农业供给侧结构性改革研究[J]. 江西社会科学, 2019, 39(12): 208-215. |
CHEN W S. Research on agricultural supply side structural reform under the strategic goal of rural revitalization[J]. Jiangxi Social Sciences, 2019, 39(12): 208-215. (in Chinese) | |
[14] | 景娥. 西北地区农产品供给质量评价指标体系构建研究[J]. 北方民族大学学报, 2021(2): 65-72. |
JING E. Study on the construction of evaluation index system of supply quality about agricultural product in northwest China[J]. Journal of North Minzu University (Philosophy and Social Science), 2021(2): 65-72. (in Chinese with English abstract) | |
[15] | 周荣荣, 王渭, 薛燕. 我国农业供给质量提升的实证分析: 以江苏为例[J]. 中共青岛市委党校青岛行政学院学报, 2018(6): 104-110. |
ZHOU R R, WANG W, XUE Y. Empirical analysis of China’s improvement of agricultural supplying quality[J]. Journal of the Party School of CPC Qingdao Municipal Committee and Qingdao Administrative Institute, 2018(6): 104-110. (in Chinese) | |
[16] | 渠鲲飞, 高燕翔. “产业融合发展理念”下农业供给质量研究[J]. 湖南社会科学, 2019(5): 120-126. |
QU K F, GAO Y X. Study on the quality of agricultural supply under the concept of industrial integration and development[J]. Social Sciences in Hunan, 2019(5): 120-126. (in Chinese) | |
[17] | 苏剑. 新供给经济学: 宏观经济学的一个发展方向[J]. 中国高校社会科学, 2016(3): 88-95. |
SU J. New supply-side economics: a new direction for macroeconomics[J]. Social Sciences in Chinese Higher Education Institutions, 2016(3): 88-95. (in Chinese with English abstract) | |
[18] | 林卫斌, 苏剑. 供给侧改革的性质及其实现方式[J]. 价格理论与实践, 2016(1): 16-19. |
LIN W B, SU J. The nature and way of supply-side reform[J]. Price: Theory & Practice, 2016(1): 16-19. (in Chinese with English abstract) | |
[19] | 贾康, 苏京春. 探析“供给侧”经济学派所经历的两轮“否定之否定”: 对“供给侧”学派的评价、学理启示及立足于中国的研讨展望[J]. 财政研究, 2014(8): 2-16. |
JIA K, SU J C. Analysis of the two rounds of “negation of negation” experienced by the “supply side” economics: evaluation,theoretical enlightenment and research prospects of “supply side” economics in China[J]. Public Finance Research, 2014(8): 2-16. (in Chinese) | |
[20] | 简新华, 余江. 马克思主义经济学视角下的供求关系分析[J]. 马克思主义研究, 2016(4): 68-76. |
JIAN X H, YU J. Analysis of the supply-demand relationship from the perspective of Marxist economics[J]. Studies on Marxism, 2016(4): 68-76. (in Chinese with English abstract) | |
[21] | 谢瑾岚. 系统关联视角下农业供给结构的演进及优化路径[J]. 求索, 2020(4): 106-113. |
XIE J L. Evolution and optimization path of agricultural supply structure from the perspective of system correlation[J]. Seeker, 2020(4): 106-113. (in Chinese) | |
[22] | 万忠, 马华明, 方伟. 农业供给侧结构性改革的逻辑解析[J]. 广东社会科学, 2017(5): 30-34. |
WAN Z, MA H M, FANG W. Logical analysis of agricultural supply side structural reform[J]. Social Sciences in Guangdong, 2017(5): 30-34. (in Chinese) | |
[23] | 杨建利, 邢娇阳. 我国农业供给侧结构性改革研究[J]. 农业现代化研究, 2016, 37(4): 613-620. |
YANG J L, XING J Y. Research on the structural reforms of agricultural supply side in China[J]. Research of Agricultural Modernization, 2016, 37(4): 613-620. (in Chinese with English abstract) | |
[24] | 张社梅, 李冬梅. 农业供给侧结构性改革的内在逻辑及推进路径[J]. 农业经济问题, 2017, 38(8): 59-65. |
ZHANG S M, LI D M. Internal logic and promotion path of agricultural supply side structural reform[J]. Issues in Agricultural Economy, 2017, 38(8): 59-65. (in Chinese) | |
[25] | 刘云菲, 李红梅, 马宏阳. 中国农垦农业现代化水平评价研究: 基于熵值法与TOPSIS方法[J]. 农业经济问题, 2021, 42(2): 107-116. |
LIU Y F, LI H M, MA H Y. Evaluation of agricultural modernization of state farms: based on entropy weight method and TOPSIS method[J]. Issues in Agricultural Economy, 2021, 42(2): 107-116. (in Chinese with English abstract) | |
[26] |
张发明, 丁峰, 王坪. 中国粮食主产区农业高质量发展水平评价与时空演变[J]. 浙江农业学报, 2021, 33(1): 150-160.
DOI |
ZHANG F M, DING F, WANG P. Evaluation of high-quality agricultural development level in major grain producing areas in China and its spatial and temporal evolution[J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 150-160. (in Chinese with English abstract)
DOI |
|
[27] | 宋洪远. 关于农业供给侧结构性改革若干问题的思考和建议[J]. 中国农村经济, 2016(10): 18-21. |
SONG H Y. Thoughts and suggestions on some issues of agricultural supply side structural reform[J]. Chinese Rural Economy, 2016(10): 18-21. (in Chinese) | |
[28] | 欧进锋, 许抄军, 刘雨骐. 基于“五大发展理念”的经济高质量发展水平测度: 广东省21个地级市的实证分析[J]. 经济地理, 2020, 40(6): 77-86. |
OU J F, XU C J, LIU Y Q. The measurement of high-quality development level from five development concepts: empirical analysis of 21 prefecture-level cities in Guangdong Province[J]. Economic Geography, 2020, 40(6): 77-86. (in Chinese with English abstract) | |
[29] |
潘雄锋, 刘清, 彭晓雪. 基于全局熵值法模型的我国区域创新能力动态评价与分析[J]. 运筹与管理, 2015, 24(4): 155-162.
DOI |
PAN X F, LIU Q, PENG X X. Evaluation and analysis of regional innovation ability in China based on overall entropy method[J]. Operations Research and Management Science, 2015, 24(4): 155-162. (in Chinese with English abstract) | |
[30] | 赵瑞芬, 王小娜. 基于全局熵值法的京津冀区域创新能力比较[J]. 中国流通经济, 2017, 31(4): 114-121. |
ZHAO R F, WANG X N. Comparison of regional innovative abilities in Beijing-Tianjin-Hebei area based on overall entropy method[J]. China Business and Market, 2017, 31(4): 114-121. (in Chinese with English abstract) | |
[31] | 王展昭, 唐朝阳. 基于全局熵值法的区域创新系统绩效动态评价研究[J]. 技术经济, 2020, 39(3): 155-168. |
WANG Z Z, TANG Z Y. Dynamic evaluation and analysis of regional innovation system performance based on overall entropy method[J]. Journal of Technology Economics, 2020, 39(3): 155-168. (in Chinese with English abstract) | |
[32] | 陈强. 高级计量经济学及Stata应用[M]. 2版. 北京: 高等教育出版社, 2014. |
[1] | GAO Yun1, ZHAN Hui\|long2,*, ZHAO Yue\|long1, LI Shu\|jun1, JIAO Jian3. Evaluation of competitiveness and regional advantage analysis of National Modern Agriculture Demonstration District#br# [J]. , 2015, 27(10): 1841-. |
[2] | YANG Nian-fang;YAN Feng-xian . The vulnerability analysis and evaluation index system study of the citrus industry chain based on the complex systems [J]. , 2011, 23(1): 164-169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||