Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2568-2583.DOI: 10.3969/j.issn.1004-1524.20221618
• Animal Science • Previous Articles Next Articles
XUE Jiaoxiong1(), ZHAO Tingfang1, ZHANG Qian2,3, TANG Qinghai1,*(
), GAO Cuicui1, ZHAO Cheng1, ZHANG Yan1, QUAN Feiyang1, LIU Ting1, YANG Can1, YANG Hai1, WANG Wenxiu3,*(
)
Received:
2022-11-16
Online:
2023-11-25
Published:
2023-12-04
CLC Number:
XUE Jiaoxiong, ZHAO Tingfang, ZHANG Qian, TANG Qinghai, GAO Cuicui, ZHAO Cheng, ZHANG Yan, QUAN Feiyang, LIU Ting, YANG Can, YANG Hai, WANG Wenxiu. Preparation of small molecule antibody Fab specific to S1 protein of canine coronavirus[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2568-2583.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221618
引物名称 Primer name | 序列 Sequence (5'→3') |
---|---|
CCV S1-a-F | ACTGGATCCATGATTGTTTTAATTTTATG |
CCV S1-a-R | ACTCTCGAGAGAGTTACAATAAGTAACTTTTTTAATAG |
CCV S1-b-F | ACTGGATCCACTGATGCTTTAGTTCAAGTTGA |
CCV S1-b-R | ACTCTCGAGAGAAACTGGAGTAGTATAAACTTGAA |
Table 1 Primer sequences
引物名称 Primer name | 序列 Sequence (5'→3') |
---|---|
CCV S1-a-F | ACTGGATCCATGATTGTTTTAATTTTATG |
CCV S1-a-R | ACTCTCGAGAGAGTTACAATAAGTAACTTTTTTAATAG |
CCV S1-b-F | ACTGGATCCACTGATGCTTTAGTTCAAGTTGA |
CCV S1-b-R | ACTCTCGAGAGAAACTGGAGTAGTATAAACTTGAA |
组别(数量)Group (Quantity) | 抗原Antigen | 佐剂Adjuvant volume | 总体积Total volume/mL |
---|---|---|---|
CCV-71(n=3) | CCV S1-ab 1.2 mL | ISA71AVG 2.8 mL | 4 |
CCV-201(n=3) | CCV S1-ab 1.2 mL+0.8 mL ddH2O | ISA201VG 2.0 mL | 4 |
PBS对照组PBS control group (n=3) | PBS 4 mL | 0 | 4 |
Table 2 Adjuvant compatibility list
组别(数量)Group (Quantity) | 抗原Antigen | 佐剂Adjuvant volume | 总体积Total volume/mL |
---|---|---|---|
CCV-71(n=3) | CCV S1-ab 1.2 mL | ISA71AVG 2.8 mL | 4 |
CCV-201(n=3) | CCV S1-ab 1.2 mL+0.8 mL ddH2O | ISA201VG 2.0 mL | 4 |
PBS对照组PBS control group (n=3) | PBS 4 mL | 0 | 4 |
Fig.1 PCR amplification products of full-length and truncated fragments of CCV S1 gene M, DL5 000 DNA marker; 1, CCV S1 gene PCR product; 2, CCV S1-a gene PCR product; 3, CCV S1-b gene PCR product.
Fig.2 Double digestion of plasmids in recombinant strain BL21(DE3)-pGEX4T-CCV S1 and Rosetta (DE3)-pGEX4T-CCV S1 A, Identification of recombinant strain BL21(DE3)-pGEX4T-CCV S1; B, Identification of recombinant strain Rosetta (DE3)-pGEX4T-CCV S1. M, DL5 000 DNA marker; 1, 3, 5, 7 were recombinant plasmid pGEX4T-CCV S1; 2, 4, 6, 8 were recombinant plasmid pGEX4T-CCV S1 digested by BamHⅠ and XhoⅠ; 9 and 11, Recombinant plasmid pGEX4T-CCV S1; 10 and 12, Recombinant plasmid pGEX4T-CCV S1 digested by BamHⅠ and XhoⅠ; 13 and 15, Empty plasmid pGEX4T-1 in control group; 14 and 16, Empty plasmid pGEX4T-1 in control group digested by BamHⅠ and XhoⅠ.
Fig.3 Double digestion of plasmid in recombinant strain Rosetta (DE3)-pET28a-CCV S1-a, Rosetta (DE3)-pGEX4T-CCV S1-a and Rosetta (DE3)-pGEX4T-CCV S1-b A, Identification of recombinant Rosetta (DE3)-pET28a-CCV S1-a and Rosetta (DE3)-pGEX4T-CCV S1-a; B, Identification of recombinant Rosetta (DE3)-pGEX4T-CCV S1-b. M, DL5 000 DNA marker; 1 and 3, Recombinant plasmid pET28a-CCV S1-a; 2 and 4, Recombinant plasmid pET28a-CCV S1-a digested by BamHⅠ and XhoⅠ; 5 and 7, Recombinant plasmid pGEX4T-CCV S1-a; 6 and 8, Recombinant plasmid pGEX4T-CCV S1-a digested by BamHⅠ and XhoⅠ; 9-12, Recombinant plasmid pGEX4T-CCV S1-b digested by BamHⅠ and XhoⅠ; 13-15, Recombinant plasmid pGEX4T-CCV S1-b.
Fig.4 SDS-PAGE analysis of recombinant strain Rosetta (DE3)-pGEX4T-CCV S1-a and Rosetta (DE3)-pGEX4T-CCV S1-b A, SDS-PAGE detection of recombinant Rosetta (DE3)-pGEX4T-CCV S1-a; B, SDS-PAGE detection of recombinant Rosetta (DE3)-pGEX4T-CCV S1-b. M, Protein marker; 1, Induced precipitation of pGEX4T-CCV S1-a; 2, Induced supernatant of pGEX4T-CCV S1-a in the first ultrasonic crushing; 3, Induced supernatant of pGEX4T-CCV S1-a in the second ultrasonic crushing; 4, pGEX4T-CCV S1-a precipitation without induced expression; 5, pGEX4T-CCV S1-a supernatant without induced expression; 6, Induced precipitation of pGEX4T-1; 7, Induced supernatant of pGEX4T-1; 8, Uninduced precipitation of pGEX4T-1; 9, Uninduced supernatant of pGEX4T-1; 10, Induced precipitation of pGEX4T-CCV S1-b; 11, Uninduced precipitation of pGEX4T-CCV S1-b; 12, Induced precipitation of pGEX4T-1; 13, Uninduced precipitation of pGEX4T-1; 14, Induced supernatant of pGEX4T-CCV S1-b in the first ultrasonic crushing; 15, Induced supernatant of pGEX4T-CCV S1-b in second ultrasonic crushing; 16, Induced supernatant of pGEX4T-1; 17, Uninduced supernatant of pGEX4T-1.
Fig.5 Detection of recombinant protein Rosetta (DE3)-pGEX4T-CCV S1-a and Rosetta (DE3)-pGEX4T-CCV S1-b by Western blot A, Western bolt identification of Rosetta (DE3)-pGEX4T-CCV S1-a protein; B, Western bolt identification of Rosetta (DE3)-pGEX4T-CCV S1-b protein. M, Protein marker; 1, Induced precipitation of pGEX4T-CCV S1-a; 2, Induced supernatant of pGEX4T-CCV S1-a in the first ultrasonic crushing; 3, Induced supernatant of pGEX4T-CCV S1-a in the second ultrasonic crushing; 4, pGEX4T-CCV S1-a precipitation without induced expression; 5, pGEX4T-CCV S1-a supernatant without induced expression; 6, Induced precipitation of pGEX4T-1; 7, Induced supernatant of pGEX4T-1; 8, Uninduced precipitation of pGEX4T-1; 9, Uninduced supernatant of pGEX4T-1; 10, Induced precipitation of pGEX4T-CCV S1-b; 11, Uninduced precipitation of pGEX4T-CCV S1-b; 12, Induced precipitation of pGEX4T-1; 13, Uninduced precipitation of pGEX4T-1; 14, Induced supernatant of pGEX4T-CCV S1-b; 15, pGEX4T-CCV S1-b supernatant without induced expression; 16, Induced supernatant of pGEX4T-1; 17, Uninduced supernatant of pGEX4T-1. The recombinant target protein bands were marked with dashed box.
Fig.6 SDS-PAGE and Western bolt analysis of recombinant strain Rosetta (DE3)-pGEX4T-CCV S1-a and Rosetta (DE3)-pGEX4T-CCV S1-b A, SDS-PAGE test; B, Western blot identification. M, Protein marker; 1, Induced precipitation of pGEX4T-CCV S1-a; 2, Induced precipitation of pGEX4T-CCV S1-b; 3, Induced precipitation of pGEX4T-1.
Fig.7 Comparison of IgY against CCV S1-ab protein before and after dialysis M, Protein marker; 1, 3 and 5, Pre-dialysis IgY; 2, 4 and 6, Post-dialysis IgY.
Fig.8 Immunologic activity of IgY against CCV S1-ab protein by Western blot M, Protein marker; 1-6 were 4 000, 8 000, 16 000, 32 000, 64 000, 128 000 times dilution of IgY.
Fig.9 Identification of the reactivity of IgY to CCV by immunoperoxidase monolayer cell assay A, Prepared specific IgY reacted with CCV; B, Negative IgY reacted with CCV.
Fig.10 SDS-PAGE detection of IgY and pepsin with different mixed mass ratio and different digestion time A, Different concentrations of pepsin solution diluted to 100 μL; B-F, The mixing mass ratio of IgY and pepsin were 5:1, 10:1, 20:1, 40:1, 80:1, respectively.M, Protein marker; 1-5, 6.4 mg·mL-1, 3.2 mg·mL-1, 1.6 mg·mL-1, 0.8 mg·mL-1 and 0.4 mg·mL-1 pepsin solution were diluted into 100 μL; 6, IgY stock solution; 7-14, The results of digested for 10 min, 0.5 h, 1 h, 2 h, 4 h, 8 h, 12 h and 24 h, respectively.
Fig.11 Detection results of IgY dissolved in sodium acetate buffer at different pH values M, Protein marker; 1-13 were the IgY dissolved by sodium acetate buffer at pH 2.0, 2.5, 3.0, 3.5, 3.8, 4.1, 4.4, 4.7, 5.0, 5.5, 6.0, 6.5, 7.0, respectively.
Fig.12 SDS-PAGE detection of enzyme-digested products under different pH conditions (mixing mass ratio of IgY and pepsin was 20:1, digested for 24 h at 37 ℃) M, Protein marker; 1-13 were enzyme-digested products at pH 2.0, 2.5, 3.0, 3.5, 3.8, 4.1, 4.4, 4.7, 5.0, 5.5, 6.0, 6.5, 7.0,respectively.
Fig.13 SDS-PAGE detection of products with different enzyme digestion pH values and different enzyme digestion time A-I, Products digested for different time at pH 2.0, 2.5, 3.0, 3.5, 3.8, 4.1, 4.4, 4.7 and 5.0, respectively.M, Protein marker; 1-8 were digested for 5 min, 10 min, 20 min, 0.5 h, 1 h, 2 h, 4 h and 8 h, respectively; 9, pH 2.0 IgY stock solution; 10, The corresponding pH IgY stock solution; 11-18 were digested for 5 min, 10 min, 20 min, 0.5 h, 1 h, 2 h, 4 h and 8 h, respectively; 19, The corresponding pH IgY stock solution; 20-27 were digested for 10 min, 30 min, 1 h, 2 h, 4 h, 8 h, 12 h and 24 h, respectively.
Fig.14 IPMA identification of blocking activity of small molecule antibody Fab against viral infectivity A, CRFK cells were infected by CCV incubated with specific small molecule Fab; B, CRFK cells were infected by CCV incubated with negative small molecule Fab.
[1] | 刘亮, 金玉荣, 任婧. 一例犬冠状病毒病的诊治与体会[J]. 广西畜牧兽医, 2021, 37(3): 125-126. |
LIU L, JIN Y R, REN J. Diagnosis and treatment of a case of canine coronavirus disease[J]. Guangxi Journal of Animal Husbandry & Veterinary Medicine, 2021, 37(3): 125-126. (in Chinese) | |
[2] | 张婷, 蒋郁明, 曾俊霞, 等. 犬冠状病毒的检测与防治措施[J]. 中国畜禽种业, 2022, 18(3): 140-142. |
ZHANG T, JIANG Y M, ZENG J X, et al. Detection and control measures of canine coronavirus[J]. The Chinese Livestock and Poultry Breeding, 2022, 18(3): 140-142. (in Chinese) | |
[3] | CAVANAGH D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae[J]. Arch Virol, 1997, 142(3):629-633. |
[4] | 纪海旺, 孙晓荣, 孙科. 犬冠状病毒研究进展[J]. 中国动物检疫, 2020, 37(10): 87-91. |
JI H W, SUN X R, SUN K. Research progress of canine coronavirus[J]. China Animal Health Inspection, 2020, 37(10): 87-91. (in Chinese) | |
[5] | VLASOVA A N, DIAZ A, DAMTIE D, et al. Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia[J]. Clinical Infectious Diseases, 2022, 74(3): 446-454. |
[6] | LU S, CHEN Y Z, QIN K, et al. Genetic and antigenic characterization of recombinant nucleocapsid proteins derived from canine coronavirus and canine respiratory coronavirus in China[J]. Science China Life Sciences, 2016, 59(6): 615-621. |
[7] | CHEN S, LIU D F, TIAN J, et al. Molecular characterization of HLJ-073, a recombinant canine coronavirus strain from China with an ORF3abc deletion[J]. Archives of Virology, 2019, 164(8): 2159-2164. |
[8] | 韦欣欣, 李泽辉, 靳晓慧, 等. 猪氨基肽酶N作为受体介导猪冠状病毒感染的研究进展[J]. 河南农业科学, 2021, 50(8): 1-8. |
WEI X X, LI Z H, JIN X H, et al. Review of aminopeptidase N as the receptor of porcine coronavirus infection[J]. Journal of Henan Agricultural Sciences, 2021, 50(8): 1-8. (in Chinese with English abstract) | |
[9] | 单颖, 许伟成, 施杏芬, 等. 猪代尔塔冠状病毒荧光定量PCR检测方法的建立及其S基因分子特征分析[J]. 浙江农业学报, 2018, 30(2): 220-227. |
SHAN Y, XU W C, SHI X F, et al. Establishment of one-step Taqman quantitative PCR detection method and molecular S gene characterization analysis of porcine deltacoronavirus[J]. Acta Agriculturae Zhejiangensis, 2018, 30(2): 220-227. (in Chinese with English abstract) | |
[10] | 乔军, 夏咸柱, 胡桂学, 等. 犬冠状病毒S蛋白主要抗原区基因片段的表达及免疫原性[J]. 中国病毒学, 2004, 19(6): 616-619. |
QIAO J, XIA X Z, HU G X, et al. Expression of the major antigenic region fragment of spike gene of canine coronavirus and immunogenicity of expressed products[J]. Virologica Sinica, 2004, 19(6): 616-619. (in Chinese with English abstract) | |
[11] | 王静. 犬冠状病毒的分离鉴定及两种检测方法的建立[D]. 北京: 中国农业科学院, 2018. |
WANG J. Isolation and identification of canine coronavirus and establishment of two detection methods[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018. (in Chinese with English abstract) | |
[12] | 柳青云, 孙康迪, 方咏青, 等. 三种免疫增效剂对犬冠状病毒疫苗免疫效果影响的研究[J]. 今日畜牧兽医, 2019, 35(12): 15. |
LIU Q Y, SUN K D, FANG Y Q, et al. Study on the influence of three immune synergists on the immune effect of canine coronavirus vaccine[J]. Today Animal Husbandry and Veterinary Medicine, 2019, 35(12): 15. (in Chinese) | |
[13] | 刘玉秀, 黄柏成, 习向锋, 等. 犬冠状病毒的进化和致病性研究进展[J]. 中国兽医杂志, 2020, 56(2): 59-63. |
LIU Y X, HUANG B C, XI X F, et al. Research progress on evolution and pathogenicity of canine coronavirus[J]. Chinese Journal of Veterinary Medicine, 2020, 56(2): 59-63. (in Chinese) | |
[14] | 余春, 夏咸柱, 池元斌, 等. 犬冠状病毒压力灭活苗的制备与应用研究[J]. 中国兽医科技, 2000, 30(5): 5-7. |
YU C, XIA X Z, CHI Y B, et al. Preparation and application of canine coronavirus pressure inactivated vaccine[J]. Chinese Veterinary Science, 2000, 30(5): 5-7. (in Chinese) | |
[15] | 孙秋艳, 沈美艳, 李舫, 等. 浒苔多糖对犬冠状病毒灭活苗的免疫增强作用[J]. 中国兽医学报, 2017, 37(9): 1664-1669. |
SUN Q Y, SHEN M Y, LI F, et al. Immuno-enhancement of enteromorpha polysaccharide on canine coronavirus inactivated vaccine[J]. Chinese Journal of Veterinary Science, 2017, 37(9): 1664-1669. (in Chinese with English abstract) | |
[16] | ZHANG X Y, CALVERT R A, SUTTON B J, et al. IgY: a key isotype in antibody evolution[J]. Biological Reviews, 2017, 92(4): 2144-2156. |
[17] | 贺维朝, 张会艳, 王浩, 等. 卵黄抗体提取方法及其在畜禽细菌性肠道疾病防治中的应用[J]. 中国畜牧兽医, 2021, 48(2): 640-649. |
HE W Z, ZHANG H Y, WANG H, et al. Extraction methods of yolk antibody and its application in prevention and treatment of bacterial intestinal diseases in livestock and poultry[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(2): 640-649. (in Chinese with English abstract) | |
[18] | WU R, YAKHKESHI S, ZHANG X Y. Scientometric analysis and perspective of IgY technology study[J]. Poultry Science, 2022, 101(4): 101713. |
[19] | FAN W H, SUN S S, ZHANG N, et al. Nasal delivery of thermostable and broadly neutralizing antibodies protects mice against SARS-CoV-2 infection[J]. Signal Transduction and Targeted Therapy, 2022, 7: 55. |
[20] | 钟欣欣, 曹立民, 林洪, 等. 酪氨酸酶特异性卵黄抗体Fab’片段的制备及其对酶活力的抑制性能[J]. 食品科学, 2018, 39(2): 119-123. |
ZHONG X X, CAO L M, LIN H, et al. Production and inhibitory effect of specific egg yolk antibody Fab' fragment against tyrosinase[J]. Food Science, 2018, 39(2): 119-123. (in Chinese with English abstract) | |
[21] | 刘美君, 高向东, 徐晨. Fab类抗体的研究进展[J]. 国际药学研究杂志, 2014, 41(3): 318-324. |
LIU M J, GAO X D, XU C. Research advances on Fabs antibodies[J]. Journal of International Pharmaceutical Research, 2014, 41(3): 318-324. (in Chinese with English abstract) | |
[22] | ZHANG C, CODINA N, TANG J Z, et al. Comparison of the pH-and thermally-induced fluctuations of a therapeutic antibody Fab fragment by molecular dynamics simulation[J]. Computational and Structural Biotechnology Journal, 2021, 19: 2726-2741. |
[23] | DUAN H L, HE Q Y, ZHOU B, et al. Anti-Trimeresurus albolabris venom IgY antibodies: preparation, purification and neutralization efficacy[J]. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2016, 22(1): 1-6. |
[24] | 乔军. 犬冠状病毒基因疫苗与重组腺病毒的构建、表达及免疫原性研究[D]. 长春: 吉林大学, 2005. |
QIAO J. Construction, expression and immunogenicity of canine coronavirus gene vaccine and recombinant adenovirus[D]. Changchun: Jilin University, 2005. (in Chinese with English abstract) | |
[25] | 郝雲峰. 犬冠状病毒S蛋白抗原多表位基因的重组表达及rSP-ELISA方法的建立[D]. 北京: 中国农业科学院, 2021. |
HAO Y F. Recombinant expression of multi-epitope gene of canine coronavirus S protein antigen and establishment of rSP-ELISA method[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese with English abstract) | |
[26] | HAO Y F, LI S H, ZHANG G Z, et al. Establishment of an indirect ELISA-based method involving the use of a multiepitope recombinant S protein to detect antibodies against canine coronavirus[J]. Archives of Virology, 2021, 166(7): 1877-1883. |
[27] | 邓博, 马兵, 刘丹, 等. 免疫佐剂的作用机制及分类[J]. 国际生物医学工程杂志, 2020, 43(6): 470-475. |
DENG B, MA B, LIU D, et al. Mechanism and classification of immune adjuvants[J]. International Journal of Biomedical Engineering, 2020, 43(6): 470-475. (in Chinese with English abstract) | |
[28] | 韩涛涛, 黎露, 唐青海, 等. 不同佐剂对猪传染性胃肠炎病毒S蛋白和猪流行性腹泻病毒S蛋白免疫原性的影响[J]. 中国农学通报, 2020, 36(30): 143-150. |
HAN T T, LI L, TANG Q H, et al. Effects of different adjuvants on immunogenicity of S protein of transmissible gastroenteritis virus and S protein of epidemic diarrhea virus in pigs[J]. Chinese Agricultural Science Bulletin, 2020, 36(30): 143-150. (in Chinese) | |
[29] | 朱文姣, 常琛, 朱玉虎, 等. 猪流行性腹泻病毒coe基因的克隆表达及卵黄抗体的制备[J]. 河南农业大学学报, 2018, 52(4): 560-565. |
ZHU W J, CHANG C, ZHU Y H, et al. Clone and expression of coe gene and preparation of egg yolk antibody against coe of porcine epidemic diarrhea virus[J]. Journal of Henan Agricultural University, 2018, 52(4): 560-565. (in Chinese with English abstract) | |
[30] | GUJRAL N, YOO H, BAMDAD F, et al. A combination of egg yolk IgY and phosvitin inhibits the growth of enterotoxigenic Escherichia coli K88 and K99[J]. Current Pharmaceutical Biotechnology, 2017, 18(5): 400-409. |
[31] | LEE D H, JEON Y S, PARK C K, et al. Immunoprophylactic effect of chicken egg yolk antibody (IgY) against a recombinant S1 domain of the porcine epidemic diarrhea virus spike protein in piglets[J]. Archives of Virology, 2015, 160(9): 2197-2207. |
[32] | 刘铭. 鸭细小病毒抗体ELISA检测方法的建立及卵黄抗体的制备[D]. 保定: 河北农业大学, 2020. |
LIU M. Establishment of ELISA for detection of duck parvovirus antibody and preparation of yolk antibody[D]. Baoding: Hebei Agricultural University, 2020. (in Chinese with English abstract) | |
[33] | AKITA E M, NAKAI S. Production and purification of Fab' fragments from chicken egg yolk immunoglobulin Y (IgY)[J]. Journal of Immunological Methods, 1993, 162(2): 155-164. |
[34] | 周欣. 鸡卵黄免疫球蛋白Fab片段的制备及其抗炎活性研究[D]. 武汉: 华中农业大学, 2020. |
ZHOU X. Preparation and anti-inflammatory activity of Fab fragment of chicken yolk immunoglobulin[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[35] | 张冯奕驰. 传染性法氏囊病卵黄抗体Fab’片段的制备条件优化及临床应用[D]. 南京: 南京农业大学, 2020. |
ZHANG F Y C. Optimization of preparation conditions and clinical application of Fab' fragment of yolk antibody against infectious bursal disease[D]. Nanjing: Nanjing Agricultural University, 2020. (in Chinese with English abstract) | |
[36] | 邹强, 李敏惠, 杨淑霞, 等. 鸡卵黄抗体Fab’的制备及鉴定[J]. 医学研究生学报, 2010, 23(2): 133-136. |
ZOU Q, LI M H, YANG S X, et al. Preparation and identification of Fab' fragments from chicken egg yolk immunoglobulin Y[J]. Journal of Medical Postgraduates, 2010, 23(2): 133-136. (in Chinese with English abstract) |
[1] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[2] | LIU Qi, CAO Yingli, WEI Ningbo, YANG Kankan, LIANG Yueqiao, SONG Xiangjun, SHAO Ying, TU Jian, QI Kezong. Cloning, expression, cellular localization of chicken DDX41 gene and its role in regulation of natural immunity by avian adenovirus type 4 infection [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1028-1036. |
[3] | TANG Guoliang, ZHANG Yubao, WANG Ruoyu, WANG Yajun, ZHAO Xia, SU Xuesi, JIN Weijie. Prokaryotic expression of Konjac mosaic virus capsid protein and preparation of polyclonal antibody [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2471-2481. |
[4] | ZHU Yinchu, WANG Hongyu, YUN Tao, HUA Jionggang, YE Weicheng, NI Zheng, CHEN Liu, ZHANG Cun. Isolation and identification of goose astrovirus in Zhejiang Province, China, and preparation of polyclone antibodies against capside protein [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2149-2159. |
[5] | ZHAO Xiuping, WANG Shuang, YAN Xingyi, DUAN Qiang, ZHANG Shuai, CHEN Yongsheng, LI Guorui. Expression, purification and bioinformatics analysis of Magnaporthe oryzae MGG-01005 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 470-478. |
[6] | SU Xuesi, ZHANG Yubao, WANG Ruoyu, WANG Yajun, TANG Guoliang, JIN Weijie. Prokaryotic expression of Plantago asiatica mosaic virus capsid protein and preparation of its polyclonal antibody [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 104-111. |
[7] | LIU Jinyu, HUANG Ying. Prokaryotic expression and antibody preparation of full-length and N-terminal half of SpTrz2 protein in Schizosaccharomyces pombe [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 34-42. |
[8] | HUANG Xiaozhen, QIAO Zhongquan, ZENG Huijie, LI Yongxin, HE Gang, WANG Xiaoming. Isolation and expression of floral organ development regulating gene LiFUL1 in Lagerstroemia indica L. [J]. , 2020, 32(7): 1206-1214. |
[9] | CHEN Yunlu, SHAN Ying, LUO Hao, XU Jidong, ZHAO Lingyan, FANG Weihuan, LI Xiaoliang. Prokaryotic expression of porcine type Ⅲ interferon and studying on its antiviral activity [J]. , 2020, 32(5): 779-788. |
[10] | PU Lusha, SU Shibo, CHEN Xiaohan, ZHAO Lili, CHEN Hongyan. Prokaryotic expression and phylogenetic analysis of ORF2 gene of goose astrovirus [J]. , 2020, 32(5): 789-797. |
[11] | WANG Yuanhong, XING Xue, LI Chuanfeng, ZHU Jie, WANG Yong, LIU Guangqing. Bioinformatics analysis and prokaryotic expression of FIPV AH1905 strain N gene [J]. , 2020, 32(3): 406-414. |
[12] | WANG Xiaopeng, ZHAO Liang, LIU Zimin, BAI Caixia, YANG Kankan, ZHANG Da, SUN Pei, JIANG Shudong, LI Yongdong, WANG Yong. Prokaryotic expression and bioinformatics analysis of PPV7 Cap gene [J]. , 2020, 32(2): 200-209. |
[13] | LI Xianchun, LU Yan, MAO Yaofang, YANG Haifeng, YU Haishan, MA Yonghua1, WAN Xuerui. Construction of prokaryotic expression vector of chicken Prnp gene and expression in Escherichia coli [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2138-2146. |
[14] | JING Liangliang, CHAI Junfa, GAO Qiang, CAO Shuang, HONG Bo, JIA Yanxia. Effect of 6 kinds of spray adjuvant on surface tension and contact angle of 3 kinds of pesticides [J]. , 2020, 32(10): 1823-1833. |
[15] | ZHANG Haojie, LIU Mei, LI Chunyan, HE Ran, LAN Jingchao, LUO Li, GU Xiaobin, XIE Yue, YANG Guangyou. Prokaryotic expression and immunofluorescence localization of nucleoside diphosphate kinase gene from Dirofilaria immitis [J]. , 2019, 31(9): 1453-1460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||