Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 523-533.DOI: 10.3969/j.issn.1004-1524.2023.03.05
• Crop Science • Previous Articles Next Articles
WANG Jinfeng1(), ZHOU Qi1, LYU Yulong2, CHEN Zhuomei1
Received:
2022-04-24
Online:
2023-03-25
Published:
2023-04-07
CLC Number:
WANG Jinfeng, ZHOU Qi, LYU Yulong, CHEN Zhuomei. Effects of intercropping tea with landscape trees on ecosystem of tea garden and tea production[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 523-533.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.05
茶叶品种 Tea cultivar | 试验地点 Location | 时间 Time | 处理 Treatment | 间作模式 Intercropping mode | 间作树种冠幅 Crown breadth of intercropping trees/m |
---|---|---|---|---|---|
开化龙顶 Kaihua longding tea | 浙江省开化县十里铺茶厂 Shilipu Tea Company, Kaihua County, Zhejiang Province | 2020-03-27、 2020-07-31 | YL | 茶-玉兰 C. sinensis-Y. denudata | 3.0~3.4 |
WHZ | 茶-无患子 C. sinensis-S. saponaria | 6.0~6.5 | |||
CK-L | 单作对照 Tea monoculture | ||||
白茶 White tea | 浙江省宁波市海曙区金陆茶厂 Jinlu Tea Company, Haishu District, Ninbo City, Zhejiang Province | 2020-04-28、 2020-08-18 | SYH | 茶-山樱花 C. sinensis-P. campanulata | 4.0~4.5 |
CK-B | 单作对照 Tea monoculture |
Table 1 The treatment of different intercropping modes
茶叶品种 Tea cultivar | 试验地点 Location | 时间 Time | 处理 Treatment | 间作模式 Intercropping mode | 间作树种冠幅 Crown breadth of intercropping trees/m |
---|---|---|---|---|---|
开化龙顶 Kaihua longding tea | 浙江省开化县十里铺茶厂 Shilipu Tea Company, Kaihua County, Zhejiang Province | 2020-03-27、 2020-07-31 | YL | 茶-玉兰 C. sinensis-Y. denudata | 3.0~3.4 |
WHZ | 茶-无患子 C. sinensis-S. saponaria | 6.0~6.5 | |||
CK-L | 单作对照 Tea monoculture | ||||
白茶 White tea | 浙江省宁波市海曙区金陆茶厂 Jinlu Tea Company, Haishu District, Ninbo City, Zhejiang Province | 2020-04-28、 2020-08-18 | SYH | 茶-山樱花 C. sinensis-P. campanulata | 4.0~4.5 |
CK-B | 单作对照 Tea monoculture |
Fig.1 Time-temperature curve of different intercropping modes in the day A, Tea garden intercropped with Y. denudata and S. saponaria; B, Tea garden intercropped with P. campanulata. YL, C. sinensis-Y. denudata; WHZ, C. sinensis-S. saponaria; CK-L, Kaihua longding Tea monoculture; SYH, C. sinensis-P. campanulata; CK-B, White Tea monoculture. The same as bellow.
处理 Treatment | 土层深度 SL/cm | pH | 有机质 OM/(g· kg-1) | 有效氮 AN/(mg· kg-1) | 全氮 TN/% | 有效钾 APo/(mg· kg-1) | 全钾 TPo/(g· kg-1) | 有效磷 APh/(mg· kg-1) | 全磷 TPh/(g· kg-1) |
---|---|---|---|---|---|---|---|---|---|
YL | 0~20 | 3.98 ±0.25 ab | 27.50 ±14.82 a | 96.00 ±27.75 a | 0.21 ±0.07 a | 112.33 ±19.55 ab | 21.11 ±1.25 ab | 31.81 ±24.45 a | 0.80 ±0.28 a |
20~40 | 3.91 ±0.16 b | 23.56 ±16.95 a | 77.12 ±21.05 a | 0.20 ±0.08 a | 90.67 ±9.71 ab | 21.22 ±1.55 ab | 9.40 ±4.31 a | 0.60 ±0.40 a | |
平均 Average | 3.95 ±0.21 a | 25.53 ±13.49 a | 86.57 ±22.74 a | 0.21 ±0.06 a | 101.50 ±7.81 a | 21.17 ±0.96 a | 20.61 ±14.33 a | 0.70 ±0.33 a | |
WHZ | 0~20 | 4.09 ±0.17 ab | 38.69 ±23.04 a | 114.09 ±56.14 a | 0.29 ±0.09 a | 71.00 ±20.52 ab | 23.83 ±3.51 ab | 14.40 ±13.80 a | 0.69 ±0.17 a |
20~40 | 4.08 ±0.19 ab | 32.83 ±20.62 a | 106.37 ±62.75 a | 0.27 ±0.08 a | 67.00 ±23.07 b | 24.50 ±2.45 a | 11.27 ±5.92 a | 0.57 ±0.18 a | |
平均 Average | 4.08 ±0.16 a | 35.76 ±21.22 a | 110.23 ±59.39 a | 0.28 ±0.08 a | 69.00 ±21.47 a | 24.17 ±2.86 a | 12.84 ±8.39 a | 0.63 ±0.10 a | |
CK-L | 0~20 | 4.18 ±0.21 ab | 33.21 ±14.57 a | 118.61 ±26.05 a | 0.20 ±0.08 a | 135.33 ±55.19 a | 18.17 ±1.86 b | 59.44 ±56.50 a | 0.71 ±0.20 a |
20~40 | 4.34 ±0.29 a | 29.35 ±19.91 a | 85.63 ±19.78 a | 0.25 ±0.07 a | 124.00 ±63.02 ab | 21.84 ±3.69 ab | 26.15 ±35.07 a | 0.62 ±0.33 a | |
平均 Average | 4.27 ±0.25 a | 31.28 ±14.09 a | 102.12 ±21.47 a | 0.23 ±0.06 a | 129.67 ±58.75 a | 20.00 ±2.53 a | 42.80 ±44.96 a | 0.67 ±0.22 a | |
SYH | 0~20 | 4.08 ±0.08 a | 43.72 ±17.76 a | 139.35 ±59.11 a | 0.22 ±0.08 a | 229.00 ±10.58 a | 15.84 ±1.26 a | 132.29 ±52.20 a | 1.01 ±0.24 a |
20~40 | 4.14 ±0.06 a | 39.01 ±5.67 a | 108.23 ±7.24 a | 0.18 ±0.03 ab | 217.67 ±37.54 a | 16.11 ±1.86 a | 127.18 ±59.64 a | 1.01 ±0.18 a | |
平均 Average | 4.11 ±0.03 a | 41.36 ±6.39 a | 123.79 ±31.39 a | 0.20 ±0.03 a | 223.33 ±24.01 a | 15.98 ±1.08 a | 129.74 ±54.98 a | 1.01 ±0.21 a | |
CK-B | 0~20 | 4.05 ±0.06 a | 32.47 ±6.93 a | 114.62 ±31.76 a | 0.17 ±0.04 ab | 255.33 ±28.54 a | 14.89 ±0.26 a | 59.58 ±11.32 a | 0.65 ±0.16 b |
20~40 | 4.12 ±0.02 a | 24.08 ±6.49 a | 86.69 ±12.18 a | 0.13 ±0.03 b | 224.67 ±13.87 a | 15.61 ±1.21 a | 52.62 ±28.22 a | 0.57 ±0.04 b | |
平均 Average | 4.09 ±0.03 a | 28.28 ±3.91 b | 100.66 ±16.56 a | 0.15 ±0.01 b | 240.00 ±20.48 a | 15.25 ±0.72 a | 56.10 ±12.09a | 0.61 ±0.10 b |
Table 2 Changes of soil nutrients in tea garden under different intercropping modes
处理 Treatment | 土层深度 SL/cm | pH | 有机质 OM/(g· kg-1) | 有效氮 AN/(mg· kg-1) | 全氮 TN/% | 有效钾 APo/(mg· kg-1) | 全钾 TPo/(g· kg-1) | 有效磷 APh/(mg· kg-1) | 全磷 TPh/(g· kg-1) |
---|---|---|---|---|---|---|---|---|---|
YL | 0~20 | 3.98 ±0.25 ab | 27.50 ±14.82 a | 96.00 ±27.75 a | 0.21 ±0.07 a | 112.33 ±19.55 ab | 21.11 ±1.25 ab | 31.81 ±24.45 a | 0.80 ±0.28 a |
20~40 | 3.91 ±0.16 b | 23.56 ±16.95 a | 77.12 ±21.05 a | 0.20 ±0.08 a | 90.67 ±9.71 ab | 21.22 ±1.55 ab | 9.40 ±4.31 a | 0.60 ±0.40 a | |
平均 Average | 3.95 ±0.21 a | 25.53 ±13.49 a | 86.57 ±22.74 a | 0.21 ±0.06 a | 101.50 ±7.81 a | 21.17 ±0.96 a | 20.61 ±14.33 a | 0.70 ±0.33 a | |
WHZ | 0~20 | 4.09 ±0.17 ab | 38.69 ±23.04 a | 114.09 ±56.14 a | 0.29 ±0.09 a | 71.00 ±20.52 ab | 23.83 ±3.51 ab | 14.40 ±13.80 a | 0.69 ±0.17 a |
20~40 | 4.08 ±0.19 ab | 32.83 ±20.62 a | 106.37 ±62.75 a | 0.27 ±0.08 a | 67.00 ±23.07 b | 24.50 ±2.45 a | 11.27 ±5.92 a | 0.57 ±0.18 a | |
平均 Average | 4.08 ±0.16 a | 35.76 ±21.22 a | 110.23 ±59.39 a | 0.28 ±0.08 a | 69.00 ±21.47 a | 24.17 ±2.86 a | 12.84 ±8.39 a | 0.63 ±0.10 a | |
CK-L | 0~20 | 4.18 ±0.21 ab | 33.21 ±14.57 a | 118.61 ±26.05 a | 0.20 ±0.08 a | 135.33 ±55.19 a | 18.17 ±1.86 b | 59.44 ±56.50 a | 0.71 ±0.20 a |
20~40 | 4.34 ±0.29 a | 29.35 ±19.91 a | 85.63 ±19.78 a | 0.25 ±0.07 a | 124.00 ±63.02 ab | 21.84 ±3.69 ab | 26.15 ±35.07 a | 0.62 ±0.33 a | |
平均 Average | 4.27 ±0.25 a | 31.28 ±14.09 a | 102.12 ±21.47 a | 0.23 ±0.06 a | 129.67 ±58.75 a | 20.00 ±2.53 a | 42.80 ±44.96 a | 0.67 ±0.22 a | |
SYH | 0~20 | 4.08 ±0.08 a | 43.72 ±17.76 a | 139.35 ±59.11 a | 0.22 ±0.08 a | 229.00 ±10.58 a | 15.84 ±1.26 a | 132.29 ±52.20 a | 1.01 ±0.24 a |
20~40 | 4.14 ±0.06 a | 39.01 ±5.67 a | 108.23 ±7.24 a | 0.18 ±0.03 ab | 217.67 ±37.54 a | 16.11 ±1.86 a | 127.18 ±59.64 a | 1.01 ±0.18 a | |
平均 Average | 4.11 ±0.03 a | 41.36 ±6.39 a | 123.79 ±31.39 a | 0.20 ±0.03 a | 223.33 ±24.01 a | 15.98 ±1.08 a | 129.74 ±54.98 a | 1.01 ±0.21 a | |
CK-B | 0~20 | 4.05 ±0.06 a | 32.47 ±6.93 a | 114.62 ±31.76 a | 0.17 ±0.04 ab | 255.33 ±28.54 a | 14.89 ±0.26 a | 59.58 ±11.32 a | 0.65 ±0.16 b |
20~40 | 4.12 ±0.02 a | 24.08 ±6.49 a | 86.69 ±12.18 a | 0.13 ±0.03 b | 224.67 ±13.87 a | 15.61 ±1.21 a | 52.62 ±28.22 a | 0.57 ±0.04 b | |
平均 Average | 4.09 ±0.03 a | 28.28 ±3.91 b | 100.66 ±16.56 a | 0.15 ±0.01 b | 240.00 ±20.48 a | 15.25 ±0.72 a | 56.10 ±12.09a | 0.61 ±0.10 b |
处理 Treatment | 土层深度 Soil layer/cm | 脲酶 Urease/(U· g-1) | 过氧化氢酶 Catalase/ (U·g-1) | 多酚氧化酶 Polyphenol oxidase/ (U·g-1) | 蛋白酶 Protease/ (U·g-1) | 蔗糖酶 Sucrase/ (U·g-1) | 脱氢酶 Dehydrogenase/ (U·g-1) |
---|---|---|---|---|---|---|---|
YL | 0~20 | 146.54±38.40 ab | 180.86±19.16 a | 48.16±4.88 a | 7.33±1.51 a | 141.13±17.73 a | 16.29±2.61 a |
20~40 | 112.33±37.06 b | 170.58±29.26 a | 44.97±13.08 a | 6.76±1.78 a | 119.68±21.90 a | 13.69±1.69 a | |
平均Mean | 129.44±14.48 a | 175.72±19.94 a | 46.56±6.97 a | 7.05±1.51 a | 130.41±9.62 a | 14.99±1.97 a | |
WHZ | 0~20 | 156.22±26.54 ab | 175.74±24.25 a | 53.98±3.08 a | 7.15±1.05 a | 128.07±27.95 a | 15.79±3.38 a |
20~40 | 142.16±35.37 ab | 153.35±14.30 a | 47.73±1.63 a | 6.19±0.39 a | 114.87±10.86 a | 16.73±2.73 a | |
平均Mean | 149.19±26.46 a | 164.55±13.03 a | 50.86±1.32 a | 6.67±0.61 a | 121.47±17.72 a | 16.27±2.19 a | |
CK-L | 0~20 | 174.38±18.07 a | 165.69±17.44 a | 51.93±6.65 a | 7.55±1.02 a | 127.16±7.07 a | 14.55±0.66 a |
20~40 | 105.45±15.60 b | 163.48±13.25 a | 40.78±16.24 a | 6.48±1.71 a | 124.54±12.57 a | 14.29±1.08 a | |
平均Mean | 139.91±4.22 a | 164.58±12.93 a | 46.35±10.54 a | 7.01±1.30 a | 125.86±8.12 a | 14.42±0.39 a | |
SYH | 0~20 | 167.90±16.29 a | 176.63±18.02 a | 39.09±6.31 a | 7.15±0.98 a | 128.74±16.06 a | 15.72±0.40 a |
20~40 | 164.45±26.21 a | 170.31±25.62 a | 40.38±4.73 a | 6.70±0.44 a | 107.15±11.32 ab | 14.09±1.58 a | |
平均Mean | 166.18±12.86 a | 173.47±11.80 a | 39.74±3.99 a | 6.92±0.68 a | 117.95±5.87 a | 14.90±0.83 a | |
CK-B | 0~20 | 138.72±34.76 ab | 162.31±13.41 a | 48.69±11.49 a | 7.37±1.49 a | 108.53±25.24 ab | 15.21±2.63 a |
20~40 | 109.83±30.29 b | 153.31±27.39 a | 47.90±11.81 a | 6.73±1.33 a | 83.36±10.41 b | 14.66±0.82 a | |
平均Mean | 124.27±4.42 b | 157.81±14.98 a | 48.29±6.71 a | 7.05±0.91 a | 95.94±10.75 b | 14.94±0.91 a |
Table 3 Enzyme activity changes of soil in tea garden under different intercropping modes
处理 Treatment | 土层深度 Soil layer/cm | 脲酶 Urease/(U· g-1) | 过氧化氢酶 Catalase/ (U·g-1) | 多酚氧化酶 Polyphenol oxidase/ (U·g-1) | 蛋白酶 Protease/ (U·g-1) | 蔗糖酶 Sucrase/ (U·g-1) | 脱氢酶 Dehydrogenase/ (U·g-1) |
---|---|---|---|---|---|---|---|
YL | 0~20 | 146.54±38.40 ab | 180.86±19.16 a | 48.16±4.88 a | 7.33±1.51 a | 141.13±17.73 a | 16.29±2.61 a |
20~40 | 112.33±37.06 b | 170.58±29.26 a | 44.97±13.08 a | 6.76±1.78 a | 119.68±21.90 a | 13.69±1.69 a | |
平均Mean | 129.44±14.48 a | 175.72±19.94 a | 46.56±6.97 a | 7.05±1.51 a | 130.41±9.62 a | 14.99±1.97 a | |
WHZ | 0~20 | 156.22±26.54 ab | 175.74±24.25 a | 53.98±3.08 a | 7.15±1.05 a | 128.07±27.95 a | 15.79±3.38 a |
20~40 | 142.16±35.37 ab | 153.35±14.30 a | 47.73±1.63 a | 6.19±0.39 a | 114.87±10.86 a | 16.73±2.73 a | |
平均Mean | 149.19±26.46 a | 164.55±13.03 a | 50.86±1.32 a | 6.67±0.61 a | 121.47±17.72 a | 16.27±2.19 a | |
CK-L | 0~20 | 174.38±18.07 a | 165.69±17.44 a | 51.93±6.65 a | 7.55±1.02 a | 127.16±7.07 a | 14.55±0.66 a |
20~40 | 105.45±15.60 b | 163.48±13.25 a | 40.78±16.24 a | 6.48±1.71 a | 124.54±12.57 a | 14.29±1.08 a | |
平均Mean | 139.91±4.22 a | 164.58±12.93 a | 46.35±10.54 a | 7.01±1.30 a | 125.86±8.12 a | 14.42±0.39 a | |
SYH | 0~20 | 167.90±16.29 a | 176.63±18.02 a | 39.09±6.31 a | 7.15±0.98 a | 128.74±16.06 a | 15.72±0.40 a |
20~40 | 164.45±26.21 a | 170.31±25.62 a | 40.38±4.73 a | 6.70±0.44 a | 107.15±11.32 ab | 14.09±1.58 a | |
平均Mean | 166.18±12.86 a | 173.47±11.80 a | 39.74±3.99 a | 6.92±0.68 a | 117.95±5.87 a | 14.90±0.83 a | |
CK-B | 0~20 | 138.72±34.76 ab | 162.31±13.41 a | 48.69±11.49 a | 7.37±1.49 a | 108.53±25.24 ab | 15.21±2.63 a |
20~40 | 109.83±30.29 b | 153.31±27.39 a | 47.90±11.81 a | 6.73±1.33 a | 83.36±10.41 b | 14.66±0.82 a | |
平均Mean | 124.27±4.42 b | 157.81±14.98 a | 48.29±6.71 a | 7.05±0.91 a | 95.94±10.75 b | 14.94±0.91 a |
Fig.3 Changes of yield and quality of tea in the garden with different intercropping modes Different lowercase letters above the columns represent statistically significant (P<0.05) differences among treatments.
因子 Factor | 茶青产量 YF | 水浸出物 WE | 茶多酚 PP | 儿茶素总量 CC | 游离氨基酸 FA | 咖啡碱 CF | 叶绿素总量 CP | 酚氨比 RA |
---|---|---|---|---|---|---|---|---|
温度T | -0.584* | -0.498 | -0.445 | -0.534* | -0.215 | -0.608* | -0.658* | -0.213 |
湿度H | 0.557* | 0.797* | 0.807* | 0.813* | -0.074 | 0.648* | 0.820* | 0.602* |
pH | -0.212 | 0.198 | 0.165 | 0.076 | -0.451 | -0.174 | 0.129 | 0.321 |
有机质OM | 0.190 | -0.001 | -0.072 | -0.137 | -0.340 | -0.112 | -0.113 | 0.094 |
有效氮AN | 0.087 | -0.224 | -0.123 | -0.168 | -0.246 | -0.089 | -0.243 | -0.003 |
全氮TN | 0.616* | 0.572* | 0.527* | 0.474 | -0.42 | 0.400 | 0.513 | 0.550* |
有效钾APo | -0.671* | -0.727* | -0.815* | -0.785* | 0.066 | -0.655* | -0.897* | -0.599* |
全钾TPo | 0.689* | 0.721* | 0.724* | 0.720* | 0.054 | 0.607* | 0.810* | 0.485 |
有效磷APh | -0.233 | -0.584* | -0.627* | -0.564* | 0.039 | -0.377 | -0.612* | -0.442 |
全磷Tph | 0.139 | -0.183 | -0.271 | -0.260 | -0.135 | -0.221 | -0.264 | -0.123 |
脲酶U | 0.145 | -0.004 | -0.105 | -0.097 | 0.084 | -0.004 | -0.097 | -0.098 |
过氧化氢酶C | 0.202 | 0.152 | 0.162 | 0.049 | 0.073 | -0.243 | 0.010 | 0.073 |
多酚氧化酶PO | 0.194 | 0.278 | 0.307 | 0.194 | -0.210 | 0.121 | 0.413 | 0.282 |
蛋白酶PR | -0.313 | -0.137 | 0.048 | -0.089 | 0.179 | -0.082 | -0.063 | -0.049 |
蔗糖酶S | 0.398 | 0.644* | 0.540* | 0.614* | -0.009 | 0.382 | 0.684* | 0.414 |
脱氢酶D | 0.332 | -0.087 | -0.052 | -0.030 | 0.507 | 0.117 | 0.059 | -0.233 |
Table 4 Correlations between the microclimate, soil characteristics and the yield, nutritional quality of tea in intercropping tea garden
因子 Factor | 茶青产量 YF | 水浸出物 WE | 茶多酚 PP | 儿茶素总量 CC | 游离氨基酸 FA | 咖啡碱 CF | 叶绿素总量 CP | 酚氨比 RA |
---|---|---|---|---|---|---|---|---|
温度T | -0.584* | -0.498 | -0.445 | -0.534* | -0.215 | -0.608* | -0.658* | -0.213 |
湿度H | 0.557* | 0.797* | 0.807* | 0.813* | -0.074 | 0.648* | 0.820* | 0.602* |
pH | -0.212 | 0.198 | 0.165 | 0.076 | -0.451 | -0.174 | 0.129 | 0.321 |
有机质OM | 0.190 | -0.001 | -0.072 | -0.137 | -0.340 | -0.112 | -0.113 | 0.094 |
有效氮AN | 0.087 | -0.224 | -0.123 | -0.168 | -0.246 | -0.089 | -0.243 | -0.003 |
全氮TN | 0.616* | 0.572* | 0.527* | 0.474 | -0.42 | 0.400 | 0.513 | 0.550* |
有效钾APo | -0.671* | -0.727* | -0.815* | -0.785* | 0.066 | -0.655* | -0.897* | -0.599* |
全钾TPo | 0.689* | 0.721* | 0.724* | 0.720* | 0.054 | 0.607* | 0.810* | 0.485 |
有效磷APh | -0.233 | -0.584* | -0.627* | -0.564* | 0.039 | -0.377 | -0.612* | -0.442 |
全磷Tph | 0.139 | -0.183 | -0.271 | -0.260 | -0.135 | -0.221 | -0.264 | -0.123 |
脲酶U | 0.145 | -0.004 | -0.105 | -0.097 | 0.084 | -0.004 | -0.097 | -0.098 |
过氧化氢酶C | 0.202 | 0.152 | 0.162 | 0.049 | 0.073 | -0.243 | 0.010 | 0.073 |
多酚氧化酶PO | 0.194 | 0.278 | 0.307 | 0.194 | -0.210 | 0.121 | 0.413 | 0.282 |
蛋白酶PR | -0.313 | -0.137 | 0.048 | -0.089 | 0.179 | -0.082 | -0.063 | -0.049 |
蔗糖酶S | 0.398 | 0.644* | 0.540* | 0.614* | -0.009 | 0.382 | 0.684* | 0.414 |
脱氢酶D | 0.332 | -0.087 | -0.052 | -0.030 | 0.507 | 0.117 | 0.059 | -0.233 |
[1] | 江媚. 茶树种植用地适宜性评价研究进展[J]. 福建茶叶, 2021, 43(1): 14-16. |
JIANG M. Research progress on suitability evaluation of tea planting land[J]. Tea in Fujian, 2021, 43(1): 14-16. (in Chinese) | |
[2] | 陈椽, 陈震古. 中国云南是茶树原产地[J]. 中国农业科学, 1979, 12(1): 91-96. |
CHEN C, CHEN Z G. Yunnan, China is the origin of tea trees[J]. Scientia Agricultura Sinica, 1979, 12(1): 91-96. (in Chinese with English abstract) | |
[3] | 张文锦, 林春莲, 熊明民. 茶树遮阴效应研究进展[J]. 福建农业学报, 2007, 22(4): 457-460. |
ZHANG W J, LIN C L, XIONG M M. Research progress in shading effeciency for tea plants[J]. Fujian Journal of Agricultural Sciences, 2007, 22(4): 457-460. (in Chinese with English abstract) | |
[4] | 陈宗懋. 中国茶叶大辞典[M]. 北京: 中国轻工业出版社, 2008. |
[5] | 陈昌辉, 王媛, 唐茜, 等. 梨茶间作茶园生态效应及效益分析[J]. 西南农业学报, 2011, 24(4): 1446-1449. |
CHEN C H, WANG Y, TANG Q, et al. Analysis of ecological and economic effects of tea garden intercropping with pear trees[J]. Southwest China Journal of Agricultural Sciences, 2011, 24(4): 1446-1449. (in Chinese with English abstract) | |
[6] | 田永辉, 梁远发, 王国华, 等. 人工生态茶园光效能研究[J]. 中国农学通报, 2001, 17(4): 25-27. |
TIAN Y H, LIANG Y F, WANG G H, et al. Study on light efficiency of artificial ecological tea garden[J]. Chinese Agricultural Science Bulletin, 2001, 17(4): 25-27. (in Chinese with English abstract) | |
[7] | 王婉, 沈汉, 舒骏, 等. 林茶复合条件下茶树光合特性与荧光参数的研究[J]. 湖南农业科学, 2013(5): 101-104. |
WANG W, SHEN H, SHU J, et al. Photosynthetic and fluorescent parameters of tea tree in forest-tea compound system[J]. Hunan Agricultural Sciences, 2013(5): 101-104. (in Chinese with English abstract) | |
[8] | 费颖新. 间作树木对茶园生态环境及茶叶品质影响的研究[D]. 南京: 南京林业大学, 2004. |
FEI Y X. A study on the effects of different shade-tree species on the environment of tea plantations and tea leaves quality[D]. Nanjing: Nanjing Forestry University, 2004. (in Chinese with English abstract) | |
[9] | 娄艳华, 郑生宏, 吉庆勇, 等. 不同套种模式对茶园小气候、土壤及茶叶品质的影响[J]. 浙江农业科学, 2020, 61(4): 682-685. |
LOU Y H, ZHENG S H, JI Q Y, et al. Effects of different interplanting patterns on microclimate, soil and tea quality in tea garden[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4): 682-685. (in Chinese) | |
[10] | 巩雪峰, 余有本, 肖斌, 等. 不同栽培模式对茶园生态环境及茶叶品质的影响[J]. 西北植物学报, 2008, 28(12): 2485-2491. |
GONG X F, YU Y B, XIAO B, et al. Effects of different cultivating modes of tea gardens on environment and tea quality[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(12): 2485-2491. (in Chinese with English abstract) | |
[11] | 刘志龙, 方建民, 虞木奎, 等. 三种林-茶复合林分中环境因子和茶的光合特征参数的日变化规律[J]. 植物资源与环境学报, 2009, 18(2): 62-67. |
LIU Z L, FANG J M, YU M K, et al. Diurnal variations of environmental factors and photosynthetic parameters of Camellia sinensis in three forest-tea mixed stands[J]. Journal of Plant Resources and Environment, 2009, 18(2): 62-67. (in Chinese with English abstract) | |
[12] | 蔡丽, 夏丽飞, 陈枚, 等. 樟茶间作对土壤养分及重金属含量的影响研究[J]. 茶叶科学技术, 2013, 54(2): 9-12. |
CAI L, XIA L F, CHEN M, et al. Effect of tea and camphor tree intercropping on soil nutrients and heavy metals[J]. Tea Science and Technology, 2013, 54(2): 9-12. (in Chinese with English abstract) | |
[13] | 李凤辉. 茶园套种降香黄檀效应的初步研究[J]. 福建林业科技, 2009, 36(2): 273-277. |
LI F H. Preliminary study on the effect of planting Dalbergia odorifera in tea garden[J]. Journal of Fujian Forestry Science and Technology, 2009, 36(2): 273-277. (in Chinese with English abstract) | |
[14] | 王广铭. 信阳茶区栗茶间作模式对生态环境的影响[J]. 湖北农业科学, 2012, 51(11): 2207-2211. |
WANG G M. Effects on chestnut-tea intercrop pattern of Xinyang tea garden on the ecological environment[J]. Hubei Agricultural Sciences, 2012, 51(11): 2207-2211. (in Chinese with English abstract) | |
[15] | 史锋厚, 蒋学莉, 郁世军, 等. 林茶复合经营对茶叶品质的影响[J]. 江苏农业科学, 2018, 46(13): 117-119. |
SHI F H, JIANG X L, YU S J, et al. Impact of forest tea compound management on quality of tea[J]. Jiangsu Agricultural Sciences, 2018, 46(13): 117-119. (in Chinese) | |
[16] | 顾俊荣, 张丽, 刘腾飞, 等. 不同茶果间作下洞庭碧螺春茶叶中矿质元素与茶多酚等有效成分的分析[J]. 江苏农业科学, 2015, 43(12): 325-328. |
GU J R, ZHANG L, LIU T F, et al. Analysis of mineral elements and tea polyphenols and other effective components in Dongting Biluochun tea under different tea-fruit intercropping[J]. Jiangsu Agricultural Sciences, 2015, 43(12): 325-328. (in Chinese) | |
[17] | 林丽. 茶-柿复合经营对茶园生态因子及茶品质的影响[D]. 临安: 浙江农林大学, 2011. |
LIN L. Effect of interplanting of tea with persimmon on the ecological factors and quality of tea in a tea orchard[D]. Lin’an: Zhejiang A&F University, 2011. (in Chinese with English abstract) | |
[18] | 刘鑫, 傅松玲, 江文秀. 林茶间作栽培模式对有机茶品质的影响[J]. 园艺与种苗, 2015, 35(7): 1-3. |
LIU X, FU S L, JIANG W X. Effects of tree-tea inter-cropping modes on the quality of organic tea[J]. Horticulture & Seed, 2015, 35(7): 1-3. (in Chinese with English abstract) | |
[19] | 董明辉, 顾俊荣, 刘腾飞, 等. 苏州洞庭山不同茶果间作茶园土壤养分的比较分析[J]. 中国茶叶, 2015, 37(5): 19-20. |
DONG M H, GU J R, LIU T F, et al. Comparative analysis of soil nutrients in different tea-fruit intercropping tea gardens in Dongting Mountain, Suzhou[J]. China Tea, 2015, 37(5): 19-20. (in Chinese with English abstract) | |
[20] | 杨海滨, 盛忠雷, 谢堃, 等. 不同栽培模式对山地茶园生态环境和茶叶品质的季节调控[J]. 西南农业学报, 2015, 28(4): 1559-1563. |
YANG H B, SHENG Z L, XIE K, et al. Seasonal regulation of different cultivation mode on ecological environment and tea quality in hilly tea plantation[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(4): 1559-1563. (in Chinese with English abstract) | |
[21] | 王正周. 茶林复合茶园的生态优势[J]. 蚕桑茶叶通讯, 1995(3): 32-34. |
WANG Z Z. Ecological advantages of tea forest compound tea garden[J]. Newsletter of Sericulture and Tea, 1995(3): 32-34. (in Chinese) | |
[22] | 张洁, 刘桂华. 板栗茶树间作模式的生态学基础[J]. 经济林研究, 2005, 23(3): 1-4. |
ZHANG J, LIU G H. Ecological basis of the intercropping pattern of Chinese chestnut with tea[J]. Economic Forest Researches, 2005, 23(3): 1-4. (in Chinese with English abstract) | |
[23] | 罗琼仙, 何青元, 肖海军, 等. 3种间种覆荫树对云南大叶茶品质影响分析[J]. 西南农业学报, 2014, 27(5): 1864-1869. |
LUO Q X, HE Q Y, XIAO H J, et al. Analysis of impact of tea quality on Yunnan big-leaf tea under cover shade of different interplanting trees[J]. Southwest China Journal of Agricultural Sciences, 2014, 27(5): 1864-1869. (in Chinese with English abstract) | |
[24] | 王丽娟, 朱兴正, 毛加梅, 等. 不同遮阴树种对茶园土壤和茶叶品质的影响[J]. 中南林业科技大学学报, 2011, 31(8): 66-73. |
WANG L J, ZHU X Z, MAO J M, et al. Effects of different single shaded trees on soil and tea quality of different tree-tea intercrop gardens[J]. Journal of Central South University of Forestry & Technology, 2011, 31(8): 66-73. (in Chinese with English abstract) | |
[25] | 刘静, 孙海伟, 张虹, 等. 北方茶林间作对茶树叶片组织结构和产量的影响[J]. 山东林业科技, 2007, 37(4): 4-6. |
LIU J, SUN H W, ZHANG H, et al. Effects of intercropping on leaf tissue structure and yield of tea trees in Northern China[J]. Journal of Shandong Forestry Science and Technology, 2007, 37(4): 4-6. (in Chinese) | |
[26] | 田亚玲, 曹福亮. 银杏-茶间作模式对土壤养分和酶活性的影响[J]. 林业科技开发, 2012, 26(5): 41-45. |
TIAN Y L, CAO F L. Effects of intercropping pattern with ginkgo and tea on soil nutrients and soil enzyme activities[J]. China Forestry Science and Technology, 2012, 26(5): 41-45. (in Chinese with English abstract) | |
[27] | 李孝金, 董兴娥. 林茶复合经营理论基础与应用技术[J]. 现代农业科技, 2011(7): 219-221. |
LI X J, DONG X E. Theoretical basis and application technology of forest-tea compound management[J]. Modern Agricultural Sciences and Technology, 2011(7): 219-221. (in Chinese) | |
[28] | 陈宗懋. 中国茶经[M]. 上海: 上海文化出版社, 1992. |
[29] | 黄寿波. 茶树生长的农业气象指标[J]. 农业气象, 1981, 2(3): 54-58. |
HUANG S B. Agrometeorological indicators of tea tree growth[J]. Chinese Journal of Agrometeorology, 1981, 2(3): 54-58. (in Chinese) | |
[30] | 汪春园, 荣光明. 茶叶品质与海拔高度及其生态因子的关系[J]. 生态学杂志, 1996, 15(1): 57-60. |
WANG C Y, RONG G M. Correlations of tea quality with altitude and ecological factors[J]. Chinese Journal of Ecology, 1996, 15(1): 57-60. (in Chinese with English abstract) | |
[31] | 马跃, 刘志龙, 虞木奎, 等. 不同郁闭度林茶复合模式对茶树光合日变化的影响[J]. 中国农学通报, 2011, 27(16): 52-56. |
MA Y, LIU Z L, YU M K, et al. Effects of different canopy closure on photosynthetic diurnal variation of tea in forest-tea compound model[J]. Chinese Agricultural Science Bulletin, 2011, 27(16): 52-56. (in Chinese with English abstract)
DOI |
|
[32] |
宋勤飞, 牛素贞, 陈正武, 等. 基于主成分分析的花溪古茶树立地土壤养分评价[J]. 浙江农业学报, 2017, 29(11): 1844-1853.
DOI |
SONG Q F, NIU S Z, CHEN Z W, et al. Evaluation of nutrient status in site soil of ancient tea trees in Huaxi on principal component analysis[J]. Acta Agriculturae Zhejiangensis, 2017, 29(11): 1844-1853. (in Chinese with English abstract)
DOI |
|
[33] | 谢克孝, 薛志慧, 陈志丹. 茶园间作不同植物对茶叶产量和品质及茶园土壤的影响[J]. 茶叶通讯, 2021, 48(3): 422-429. |
XIE K X, XUE Z H, CHEN Z D. Effects of intercropping different plants in tea garden on yield and quality of tea and soil of tea garden[J]. Journal of Tea Communication, 2021, 48(3): 422-429. (in Chinese with English abstract) | |
[34] |
ROSE T J, KEARNEY L J, ERLER DIRK V, et al. Integration and potential nitrogen contributions of green manure inter-row legumes in coppiced tree cropping systems[J]. European Journal of Agronomy, 2019, 103: 47-53.
DOI URL |
[35] | 刘腾飞, 董明辉, 张丽, 等. 不同间作模式对茶园土壤和茶叶营养品质的影响[J]. 食品科学技术学报, 2017, 35(6): 67-76. |
LIU T F, DONG M H, ZHANG L, et al. Effects of different intercropping patterns on tea-planted soil and tea nutritional quality[J]. Journal of Food Science and Technology, 2017, 35(6): 67-76. (in Chinese with English abstract) | |
[36] | 陈美丽, 王熙富. 茶林复合栽培模式及应用现状[J]. 安徽农业科学, 2021, 49(13): 10-11. |
CHEN M L, WANG X F. Compound cultivation model and application status of tea-forest[J]. Journal of Anhui Agricultural Sciences, 2021, 49(13): 10-11. (in Chinese with English abstract) | |
[37] |
朱荫, 张悦, 严寒, 等. 不同茶叶中游离氨基酸的对映异构体[J]. 中国农业科学, 2021, 54(4): 804-819.
DOI |
ZHU Y, ZHANG Y, YAN H, et al. Enantiomeric analysis of free amino acids in different teas[J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819. (in Chinese with English abstract)
DOI |
[1] | LUO Haiping, PAN Liuxin, HU Xueying, LIU Zuguang. Study on grain and ecological effects of arable land use change in major grain-producing areas in China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 226-237. |
[2] | LIANG Le, LIU Juan, LI Xiaomei, LIAO Jichao, LI Huanxiu, TANG Yi. Effects of intercropping with different genotypes of cherry tomato on fruit quality and selenium content [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1870-1878. |
[3] | MENG Mei, YANG Yawei, YANG Lei. Study on coupling relationship between reserve resources development and ecological environment of cultivated land in Xinjiang [J]. , 2020, 32(3): 543-551. |
[4] | TAO Jing, WU Qifeng, SHI Jiang, LI Songhao, GE Jiangfei, CHEN Junhui, XU Qiufang, LIANG Chenfei, QIN Hua. Impact of intercropping and arbuscular mycorrhizal fungi on soil fertility and corn yield in a newly cultivated mountain land [J]. , 2020, 32(1): 115-123. |
[5] | DONG Yufei, LYU Xiangzhang, ZHANG Zikun, HE Hongjun, YU Jingquan, ZHOU Yanhong. Effects of different cultivation patterns on soil microbial community and enzyme activity in continuous cropped pepper field [J]. , 2019, 31(9): 1485-1492. |
[6] | YANG Yaya, WU Na, LIU Jili, YANG Nana, CAI Ming, HE Haifeng. Effects of potato-oats on nitrogen content and soil nitrogen in potato [J]. , 2019, 31(12): 1955-1962. |
[7] | PU Tian, ZHANG Qun, CHEN Guopeng, CHEN Cheng, ZENG Hong, PENG Xiao, YANG Wenyu, WANG Xiaochun*. Effects of row spacing on yield, dry matter accumulation and partitioning of maize in maizesoybean relay strip intercropping system [J]. , 2016, 28(8): 1277-. |
[8] | GONG Shasha1, JIANG Hong1,2,*, MA Jinli1, SHU Haiyan3, CHEN Xiaofeng1. Variations of net ecosystem carbon exchange and chlorophyll fluorescence parameters of Phyllostachys edulis forest in Anji [J]. , 2016, 28(6): 1003-. |
[9] | CHEN Guo-peng, WANG Xiao-chun, PU Tian, ZENG Hong, CHEN Cheng, PENG Xiao, DING Guo-hui, WANG Rui, YANG Wen-yu. Relationship of field microclimate and population yield in maize-soybean relay strip intercropping system [J]. , 2016, 28(11): 1812-1821. |
[10] | ZHA Liang\|yu1, LI Yi\|nian1, WANG Zhao\|ye1, ZHANG Lei1, WANG Shu\|huan1,QIN Qin1, BIAN Xin\|min2,*. Analysis on economic benefit of straw concentrated ditch\|buried returning field using machine [J]. , 2015, 27(3): 467-. |
[11] | DU Hui\|shi1, TENG Ze\|yu1, WANG Hua2, CHEN Zhi\|wen1,*, CHEN Yan\|nan1. Forecast of ecosystem services value in Baicheng City, Jilin Province [J]. , 2014, 26(6): 1583-. |
[12] | HANG Yun\|fei1, ZHANG Hui2,*, XIAO Luo\|bin1. Analysis on dynamic changes of ecosystem services value in Jiaxing City under different scenarios [J]. , 2014, 26(6): 1615-. |
[13] | WANG Zhu;YANG Wenyu. Effects of different sowing time on the carbonnitrogen metabolism and yield of soybean cultivars with different maturity under relaycropping pattern [J]. , 2014, 26(3): 0-556563. |
[14] | ZHANG Jue;ZHANG Hui;*. Influence of land use change on ecosystem services value in Jiaxing City [J]. , 2014, 26(2): 0-444450. |
[15] | CHEN Zhifeng;ZENG Yurong;LIN Xiaogui;LIN Guohua;LIU Rongzhang;*. The input-utput analysis of economical energy value of leisure agricultural park ecosystems [J]. , 2011, 23(6): 0-1260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||