Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 515-526.DOI: 10.3969/j.issn.1004-1524.20230237
• Animal Science • Previous Articles Next Articles
YU Huan(), LI Hui(
), CHEN Youbo, SHI Yushi, ZHAO Depeng, LONG Xia, TAN Qisong
Received:
2023-03-01
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
YU Huan, LI Hui, CHEN Youbo, SHI Yushi, ZHAO Depeng, LONG Xia, TAN Qisong. Screening and functional analysis of proteins interacting with chicken adenylosuccinate lyase[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 515-526.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230237
Fig.1 PCR amplification of chicken ADSL gene and double digestion identification of recombinant plasmids A, PCR amplification plot of chicken ADSL gene; B, double-enzyme identification plot of recombinant eukaryotic expression vector. In which, lane 1 was tpEGFP-C1 plasmid, lane 2 was the biallelic graph of recombinant plasmid pEGFP-C1-ADSL. M was DNA marker.
Fig.2 Identification results of myoblasts of Chishui black-bone chicken A, Bright-field picture; B, DAPI nuclear staining picture; C, Fluorescence plot of primary antibody reaction; D, Superimposition of B and C.
Fig.3 Western blotting of pEGFP-C1 and pEGFP-C1-ADSL in myoblasts M was protein marker; Lanes 1, 2, and 3 were pEGFP-C1 protein blots, and lanes 4, 5 and 6 were pEGFP-C1-ADSL protein blots.
图A Subcellular localization of pEGFP-C1 and pEGFP-C1-ADSL in myoblasts A, B and C were pEGFP-C1 tag protein, and Figures D, E and F were pEGFP-C1-ADSL recombinant protein. The green color was the luminescence effect of myoblasts transfected with pEGFP-C1 and pEGFP-C1-ADSL respectively, and the blue color was the DAPI nuclear staining result.
UniProt登录号 | 蛋白质名称 | 基因名 | 长度 | 分子量 | 覆盖度 |
---|---|---|---|---|---|
UniProt accession | Protein name | Gene name | Length/aa | Mass/ku | Coverage/% |
P97461 | 核糖体蛋白S5 Ribosomal protein S5 | Rps5 | 204 | 22.9 | 4.41 |
Q9CZX8 | 核糖体蛋白S19 Ribosomal protein S19 | Rps19 | 145 | 16.1 | 8.97 |
P60867 | 核糖体蛋白S20 Ribosomal protein S20 | Rps20 | 119 | 13.4 | 10.08 |
P62858 | 核糖体蛋白S28 Ribosomal protein S28 | Rps28 | 69 | 7.8 | 17.39 |
P62274 | 核糖体蛋白S29 Ribosomal protein S29 | Rps29 | 56 | 6.7 | 14.29 |
Q9D8E6 | 核糖体蛋白L4 Ribosomal protein L4 | Rpl4 | 419 | 47.2 | 12.89 |
P47962 | 核糖体蛋白L5 Ribosomal protein L5 | Rpl5 | 297 | 34.4 | 12.79 |
O09167 | 核糖体蛋白L21 Ribosomal protein L21 | Rpl21 | 160 | 18.6 | 6.88 |
P61255 | 核糖体蛋白L26 Ribosomal protein L26 | Rpl26 | 145 | 17.3 | 9.66 |
P62900 | 核糖体蛋白L31 Ribosomal protein L31 | Rpl31 | 125 | 14.5 | 18.40 |
P62717 | 核糖体蛋白L18A Ribosomal protein L18A | Rpl18a | 176 | 20.7 | 15.34 |
P99027 | 核糖体蛋白,大P2 Ribosomal protein, large P2 | Rplp2 | 115 | 11.7 | 25.22 |
Q7TPR4 | 肌动蛋白1 Actinin 1 | Actn1 | 892 | 103.1 | 4.04 |
P68134 | 肌动蛋白α1 Actin alpha 1 | Acta1 | 377 | 42.1 | 70.82 |
P62737 | 肌动蛋白α2 Actin alpha 2 | Acta2 | 377 | 42.0 | 72.41 |
P63260 | 肌动蛋白γ Actin, gamma | Actg1 | 375 | 41.8 | 73.60 |
Q9R0Q6 | 肌动蛋白相关蛋白2/3复合体,1A亚基 | Arpc1a | 370 | 41.6 | 8.38 |
Actin related protein 2/3 complex, subunit 1A | |||||
P11276 | 纤连蛋白1 Ffibronectin1 | Fn1 | 2 477 | 272.5 | 2.10 |
Q9JKF1 | IQ基序包含GTP酶激活蛋白1 | Iqgap1 | 1 657 | 188.7 | 3.98 |
IQ motif containing GTPase activating protein 1 | |||||
Q9R0U0 | 富含丝氨酸和精氨酸的剪接因子10 | Srsf10 | 262 | 31.3 | 4.20 |
Serine and arginine-rich splicing factor 10 | |||||
Q8BL97 | 富含丝氨酸和精氨酸的剪接因子7 | Srsf7 | 267 | 30.8 | 5.24 |
Serine and arginine-rich splicing factor 7 | |||||
Q8CI51 | PDZ和LIM结构域5 PDZ and LIM domain 5 | Pdlim5 | 591 | 63.3 | 3.22 |
Q9CZD3 | 甘氨酸-tRNA合成酶Glycyl-tRNA synthetase | Gars | 729 | 81.9 | 1.78 |
Q99JI6 | RAS相关蛋白1b RAS related protein 1b | Rap1b | 184 | 20.8 | 6.52 |
P54822 | 腺苷酸基琥珀酸裂解酶Adenylosuccinate lyase | Adsl | 484 | 54.9 | 15.29 |
Table 1 List of selected proteins interacting with chicken ADSL protein
UniProt登录号 | 蛋白质名称 | 基因名 | 长度 | 分子量 | 覆盖度 |
---|---|---|---|---|---|
UniProt accession | Protein name | Gene name | Length/aa | Mass/ku | Coverage/% |
P97461 | 核糖体蛋白S5 Ribosomal protein S5 | Rps5 | 204 | 22.9 | 4.41 |
Q9CZX8 | 核糖体蛋白S19 Ribosomal protein S19 | Rps19 | 145 | 16.1 | 8.97 |
P60867 | 核糖体蛋白S20 Ribosomal protein S20 | Rps20 | 119 | 13.4 | 10.08 |
P62858 | 核糖体蛋白S28 Ribosomal protein S28 | Rps28 | 69 | 7.8 | 17.39 |
P62274 | 核糖体蛋白S29 Ribosomal protein S29 | Rps29 | 56 | 6.7 | 14.29 |
Q9D8E6 | 核糖体蛋白L4 Ribosomal protein L4 | Rpl4 | 419 | 47.2 | 12.89 |
P47962 | 核糖体蛋白L5 Ribosomal protein L5 | Rpl5 | 297 | 34.4 | 12.79 |
O09167 | 核糖体蛋白L21 Ribosomal protein L21 | Rpl21 | 160 | 18.6 | 6.88 |
P61255 | 核糖体蛋白L26 Ribosomal protein L26 | Rpl26 | 145 | 17.3 | 9.66 |
P62900 | 核糖体蛋白L31 Ribosomal protein L31 | Rpl31 | 125 | 14.5 | 18.40 |
P62717 | 核糖体蛋白L18A Ribosomal protein L18A | Rpl18a | 176 | 20.7 | 15.34 |
P99027 | 核糖体蛋白,大P2 Ribosomal protein, large P2 | Rplp2 | 115 | 11.7 | 25.22 |
Q7TPR4 | 肌动蛋白1 Actinin 1 | Actn1 | 892 | 103.1 | 4.04 |
P68134 | 肌动蛋白α1 Actin alpha 1 | Acta1 | 377 | 42.1 | 70.82 |
P62737 | 肌动蛋白α2 Actin alpha 2 | Acta2 | 377 | 42.0 | 72.41 |
P63260 | 肌动蛋白γ Actin, gamma | Actg1 | 375 | 41.8 | 73.60 |
Q9R0Q6 | 肌动蛋白相关蛋白2/3复合体,1A亚基 | Arpc1a | 370 | 41.6 | 8.38 |
Actin related protein 2/3 complex, subunit 1A | |||||
P11276 | 纤连蛋白1 Ffibronectin1 | Fn1 | 2 477 | 272.5 | 2.10 |
Q9JKF1 | IQ基序包含GTP酶激活蛋白1 | Iqgap1 | 1 657 | 188.7 | 3.98 |
IQ motif containing GTPase activating protein 1 | |||||
Q9R0U0 | 富含丝氨酸和精氨酸的剪接因子10 | Srsf10 | 262 | 31.3 | 4.20 |
Serine and arginine-rich splicing factor 10 | |||||
Q8BL97 | 富含丝氨酸和精氨酸的剪接因子7 | Srsf7 | 267 | 30.8 | 5.24 |
Serine and arginine-rich splicing factor 7 | |||||
Q8CI51 | PDZ和LIM结构域5 PDZ and LIM domain 5 | Pdlim5 | 591 | 63.3 | 3.22 |
Q9CZD3 | 甘氨酸-tRNA合成酶Glycyl-tRNA synthetase | Gars | 729 | 81.9 | 1.78 |
Q99JI6 | RAS相关蛋白1b RAS related protein 1b | Rap1b | 184 | 20.8 | 6.52 |
P54822 | 腺苷酸基琥珀酸裂解酶Adenylosuccinate lyase | Adsl | 484 | 54.9 | 15.29 |
Fig.8 PPI network diagram of chicken ADSL protein A, Before the introduction of 61 proteins; B, After the introduction of 61 proteins; C, Cytoscape optimized.
Fig.9 Effect of ADSL gene overexpression (A) and silencing (B) on the expression of related genes * and ** meant significant differences at the levels of P<0.05 and P<0.01, respectively.
[1] | MARKHAM G D, BOCK C L, SCHALK-HIHI C. Acid-base catalysis in the chemical mechanism of inosine monophosphate dehydrogenase[J]. Biochemistry, 1999, 38(14): 4433-4440. |
[2] | 徐善金. 鸭ADSL与PurH基因序列特征及表达与肌肉肌苷酸(IMP)含量的相关性分析[D]. 南京: 南京农业大学, 2011. |
XU S J. Analysing sequence characters of ADSL and PurH gene and correlation between genes expression and IMP content in duck[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract) | |
[3] | 刘长青. 山东省地方鸡种风味特性候选基因ADSL与ATIC的研究[D]. 曲阜: 曲阜师范大学, 2005. |
LIU C Q. Study on candidate genes ADSL and ATIC for flavor characteristics of Shandong local chicken breeds[D]. Qufu: Qufu Normal University, 2005. (in Chinese with English abstract) | |
[4] | 陈滇黔, 张华琦, 韩勇. 山羊肉质相关主效基因研究进展[J]. 动物营养学报, 2020, 32(6): 2507-2512. |
CHEN D Q, ZHANG H Q, HAN Y. Research progress on meat quality related major genes of goats[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2507-2512. (in Chinese with English abstract) | |
[5] | 曹少奇, 张梅, 张苗苗, 等. 巨型玫瑰冠鸡ADSL基因表达及其与IMP的相关分析[J]. 中国家禽, 2019, 41(6): 46-48. |
CAO S Q, ZHANG M, ZHANG M M, et al. Expression of ADSL gene in giant rose-crown chicken and its correlation with IMP[J]. China Poultry, 2019, 41(6): 46-48. (in Chinese with English abstract) | |
[6] | MAO H G, CAO H Y, LIU H H, et al. Association of ADSL gene polymorphisms with meat quality and carcass traits in domestic pigeons (Columba livia)[J]. British Poultry Science, 2018, 59(5): 604-607. |
[7] | 虎红红, 黄增文, 母童, 等. 静原鸡肌苷酸沉积与ADSL基因mRNA表达量相关性分析[J]. 基因组学与应用生物学, 2020, 39(12): 5442-5448. |
HU H H, HUANG Z W, MU T, et al. Correl ation analysis between inosine deposition and ADSL gene mRNA expression in Jingyuan chicken[J]. Genomics and Applied Biology, 2020, 39(12): 5442-5448. (in Chinese with English abstract) | |
[8] | 张梅. 玫瑰冠鸡的冠型鉴定及FABP和ADSL基因与肉品质的关联分析[D]. 石河子: 石河子大学, 2018. |
ZHANG M. Coronary identification of rose crowned chickens association analysis of FABP and ADSL genes and meat quality[D]. Shihezi: Shihezi University, 2018. (in Chinese with English abstract) | |
[9] | 刘长青, 刘帅, 包阿东, 等. 北京油鸡ADSL基因的克隆、表达及其结构与功能分析[J]. 动物学研究, 2008, 29(4): 353-362. |
LIU C Q, LIU S, BAO A D, et al. Molecular clone, expression, structure and function study of Beijing fatty chicken ADSL gene[J]. Zoological Research, 2008, 29(4): 353-362. (in Chinese with English abstract) | |
[10] | YUAN T, GU J R, GU W B, et al. Molecular cloning, characterization and expression analysis of adenylosuccinate lyase gene in grass carp (Ctenopharyngodon idella)[J]. Molecular Biology Reports, 2011, 38(3): 2059-2065. |
[11] | 余欢. 鸡ADSL基因的组织表达及其互作蛋白的筛选与功能分析[D]. 贵阳: 贵州大学, 2023. |
YU H. Tissue expression of chicken ADSL gene screening and functional analysis of its interacting proteins[D]. Guiyang: Guizhou University, 2023. (in Chinese with English abstract) | |
[12] | 豆腾飞, 汪善荣, 佟荟全, 等. 武定鸡和大围山微型鸡肌苷酸含量及ADSL基因表达差异研究[J]. 中国家禽, 2017, 39(14): 7-10. |
DOU T F, WANG S R, TONG H Q, et al. Study on inosinic acid content and ADSL gene expression in Wuding chicken and Daweishan mini chicken[J]. China Poultry, 2017, 39(14): 7-10. (in Chinese with English abstract) | |
[13] | 栾德琴. 鸡肌肉生长相关基因的表达与肌苷酸关键酶基因网络调控的构建[D]. 扬州: 扬州大学, 2012. |
LUAN D Q. Analysis of gene expression profiles and construction of network for key genes associated with inosine monophosphate in chicken muscles[D]. Yangzhou: Yangzhou University, 2012. (in Chinese with English abstract) | |
[14] | 海玲, 富红丹, 赵静. 携pEGFP-C1的目的基因真核表达载体的构建方法研究[J]. 疾病监测与控制, 2015, 9(5): 301-302. |
HAI L, FU H D, ZHAO J. Research on the method of constructing eukaryotic expression vectors with pEGFP-C1[J]. Journal of Diseases Monitor & Control, 2015, 9(5): 301-302. (in Chinese with English abstract) | |
[15] | ZHOU L, HAN Y F, YUAN C, et al. Screening and bioinformatics analysis of cellular proteins interacting with chicken bromodomain-containing protein 2 in DF-1 cells[J]. British Poultry Science, 2021, 62(6): 810-819. |
[16] | LAI M D, XU J. Ribosomal proteins and colorectal cancer[J]. Current Genomics, 2007, 8(1): 43-49. |
[17] | 魏宁, 程远明, WANG Zhijia, 等. SRSF10调控的选择性剪接在成肌细胞分化和葡萄糖产生中的重要作用[J]. 科学新闻, 2016(1): 128. |
WEI N, CHENG Y M, WANG Z J, et al. SRSF10 plays a role in myoblast differentiation and glucose production via regulation of alternative splicing[J]. Science News, 2016(1): 128. (in Chinese with English abstract) | |
[18] | 李朝华, 胡明, 钱冬萌, 等. 免疫共沉淀联合质谱分析筛选与HCMV IE86相互作用蛋白[J]. 青岛大学学报(医学版), 2018, 54(1): 1-5. |
LI Z H, HU M, QIAN D M, et al. Identification of proteins interacting with human cytomegalovirus immediate-early protein 86 by co-immunoprecipitation combined with mass spectrometry[J]. Journal of Qingdao University (Medical Sciences), 2018, 54(1): 1-5. (in Chinese with English abstract) | |
[19] | 陈菲, 杨福生, 周峰. 萧山鸡GARS-AIRS-GART基因多态性及其对鸡肉IMP含量影响的研究[C]// 第八届全国畜牧兽医青年科技工作者学术研讨会论文集, 绍兴, 2016: 174. |
[20] | 施歌, 马俊青, 赵超越, 等. Rap1b对鼠前成骨细胞Mc3T3-E1成骨分化早期的影响[J]. 口腔医学, 2017, 37(5): 413-417. |
SHI G, MA J Q, ZHOU F, et al. Effect of Rap1b on early osteogenic differentiation of mouse preosteoblasts (Mc3T3-E1)[J]. Stomatology, 2017, 37(5): 413-417. (in Chinese with English abstract) | |
[21] | 刘珂含, 王永, 李艳艳, 等. SRSF10对山羊肌内前体脂肪细胞分化的影响[J]. 畜牧兽医学报, 2022, 53(6): 1768-1778. |
LIU K H, WANG Y, LI Y Y, et al. Effects of SRSF10 on the differentiation of intramuscular preadipocytes in goats[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1768-1778. (in Chinese with English abstract) | |
[22] | 冯英. SRSF10调控的选择性剪接在脂肪细胞分化中的调控作用[DB/OL]. (2017-12-01)[2023-02-28]. https://kns.cnki.net/kcms2/article/abstract?v=fCqJ37DMrBku2-QrKcgpMdVHXc0K54QVBQC5Z_52tZX6gemw7IqDe_ZNasLI0zRc71YFXr7XP3OTrnbX-kLz-CoGAnFA9PQ_wHedpObtWvKySMUyXOp67BXqC5JgQurcOeJg6xBb-_015CMxfnaSjw==&uniplatform=NZKPT&language=CHS. |
[23] | 刘吉娟, 杨波, 罗瑞明, 等. 冷藏期间滩羊肉保水性变化的机制[J]. 食品科学, 2022, 43(15): 191-198. |
LIU J J, YANG B, LUO R M, et al. Mechanism underlying changes in the water retention of Tan sheep meat during cold storage[J]. Food Science, 2022, 43(15): 191-198. (in Chinese with English abstract) | |
[24] | 刘吉娟. 宰后成熟期间糖酵解对滩羊肉保水性的调控机制[D]. 银川: 宁夏大学, 2022. |
LIU J J. Regulatory mechanism of glycolysis on water-holding capacity of Tan sheep meat during postmortem aging[D]. Yinchuan: Ningxia University, 2022. (in Chinese with English abstract) | |
[25] | 杨威利. 转录因子NFIA对脂肪细胞分化的调节及其机制研究[D]. 天津: 天津医科大学, 2018. |
YANG W L. Role of NFIA in adipocyte differentiation and the mechanisms involved in the process[D]. Tianjin: Tianjin Medical University, 2018. (in Chinese with English abstract) | |
[26] | 于雪珂. PDLIM3和PDLIM5基因对鸡骨骼肌卫星细胞增殖分化的影响[D]. 雅安: 四川农业大学, 2019. |
YU X K. Effects of PDLIM3 and PDLIM5 genes on proliferation and differentiation of chicken skeletal muscle satellite cells[D]. Ya’an: Sichuan Agricultural University, 2019. (in Chinese with English abstract) | |
[27] | 赵彩霞. 绵羊肌动蛋白γ家族基因的克隆、结构特征及组织表达分析[D]. 泰安: 山东农业大学, 2017. |
ZHAO C X. Molecular cloning, characterization and tissue expression analysis of the ovine actin gamma genes[D]. Tai’an: Shandong Agricultural University, 2017. (in Chinese with English abstract) | |
[28] | 蒋腾飞, 韩雪蕾, 刘榜. 猪PSMC5和COPB1基因的SNP检测及与背膘厚的关联分析[C]// 第十二次全国畜禽遗传标记研讨会论文集, 南京, 2010: 101. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||