[1] |
何桢锐, 黄晓彤, 舒灿伟, 等. 稻瘟病菌真菌病毒的研究进展[J]. 热带生物学报, 2021, 12(3): 385-392.
|
|
HE Z R, HUANG X T, SHU C W, et al. Research progress on mycoviruses of Magnaporthe oryzae[J]. Journal of Tropical Biology, 2021, 12(3): 385-392. (in Chinese with English abstract)
|
[2] |
OU S H. Exploring tropical rice diseases: a reminiscence[J]. Annual Review of Phytopathology, 1984, 22: 1-11.
|
[3] |
向聪, 雷东阳, 任西明, 等. 水稻抗稻瘟病遗传育种研究进展[J]. 作物研究, 2017, 31(5): 547-552.
|
|
XIANG C, LEI D Y, REN X M, et al. Research progress in genetic and breeding of rice blast resistance[J]. Crop Research, 2017, 31(5): 547-552. (in Chinese with English abstract)
|
[4] |
FARMAN M, PETERSON G, CHEN L, et al. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States[J]. Plant Disease, 2017, 101(5): 684-692.
|
[5] |
严贞, 陈付琴. 水稻稻瘟病的发病症状与防治措施研究进展[J]. 农家参谋, 2022(22): 54-56.
|
|
YAN Z, CHEN F Q. Research progress on symptoms and control measures of rice blast[J]. The Farmers Consultant, 2022(22): 54-56. (in Chinese)
|
[6] |
杨美华. 几种抗稻瘟病生防菌的活性及其物质基础[D]. 贵阳: 贵州大学, 2020.
|
|
YANG M H. Biocontrol activities of several biocontrol bacteria on rice blast and the substantial basis[D]. Guiyang: Guizhou University, 2020. (in Chinese with English abstract)
|
[7] |
顾成, 谢松华, 陆陈红, 等. 不同药剂对水稻穗颈瘟的防效研究[J]. 现代农业科技, 2023(5): 91-93.
|
|
GU C, XIE S H, LU C H, et al. Study on the control effect of different pesticides on panicle neck blast of rice[J]. Modern Agricultural Science and Technology, 2023(5): 91-93. (in Chinese)
|
[8] |
亓璐, 张涛, 曾娟, 等. 近年我国水稻五大产区主要病害发生情况分析[J]. 中国植保导刊, 2021, 41(4): 37-42, 65.
|
|
QI L, ZHANG T, ZENG J, et al. Analysis of the occurrence and control of diseases in five major rice-producing areas in China in recent years[J]. China Plant Protection, 2021, 41(4): 37-42, 65. (in Chinese with English abstract)
|
[9] |
KASUGA K, SASAKI A, MATSUO T, et al. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster[J]. Applied Microbiology and Biotechnology, 2017, 101(10): 4259-4268.
|
[10] |
陈绪涛, 柴兆元, 霍光华, 等. 木荷皂苷对稻瘟病病原细胞的致毒作用[J]. 江苏农业科学, 2017, 45(5): 86-90.
|
|
CHEN X T, CHAI Z Y, HUO G H, et al. Toxic effect of Schima superba saponin on rice blast pathogenic cells[J]. Jiangsu Agricultural Sciences, 2017, 45(5): 86-90. (in Chinese)
|
[11] |
HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(24): 11281-11284.
|
[12] |
MARES D, ROMAGNOLI C, ANDREOTTI E, et al. Synthesis and antifungal action of new tricyclazole analogues[J]. Journal of Agricultural and Food Chemistry, 2004, 52(7): 2003-2009.
|
[13] |
王佐乾. 稻瘟病菌对稻瘟灵的抗性分子机理研究[D]. 武汉: 华中农业大学, 2018.
|
|
WANG Z Q. Molecular mechanism of resistance to isoprothiolane in Magnaporthe oryzae[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract)
|
[14] |
KIM Y S, DIXON E W, VINCELLI P, et al. Field resistance to strobilurin (Q(o)I) fungicides in Pyricularia grisea caused by mutations in the mitochondrial cytochrome b gene[J]. Phytopathology, 2003, 93(7): 891-900.
|
[15] |
江南, 刘雄伦, 戴良英, 等. 水稻抗稻瘟病基因的定位与克隆研究进展[J]. 中国农学通报, 2010, 26(10): 270-275.
|
|
JIANG N, LIU X L, DAI L Y, et al. Advances on the mapping and cloning of blast resistance gene in rice[J]. Chinese Agricultural Science Bulletin, 2010, 26(10): 270-275. (in Chinese with English abstract)
|
[16] |
YAKURA M, OZOE F, ISHIDA H, et al. zds1, a novel gene encoding an ortholog of Zds1 and Zds2, controls sexual differentiation, cell wall integrity and cell morphology in fission yeast[J]. Genetics, 2006, 172(2): 811-825.
|
[17] |
YASUTIS K M, KOZMINSKI K G. Cell cycle checkpoint regulators reach a zillion[J]. Cell Cycle, 2013, 12(10): 1501-1509.
|
[18] |
ROSSIO V, KAZATSKAYA A, HIRABAYASHI M, et al. Comparative genetic analysis of PP2A-Cdc55 regulators in budding yeast[J]. Cell Cycle, 2014, 13(13): 2073-2083.
|
[19] |
CALABRIA I, BARO B, RODRIGUEZ-RODRIGUEZ J A, et al. Zds1 regulates PP2A(Cdc55) activity and Cdc14 activation during mitotic exit through its Zds_C motif[J]. Journal of Cell Science, 2012, 125(Pt 12): 2875-2884.
|
[20] |
XU J R, STAIGER C J, HAMER J E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(21): 12713-12718.
|
[21] |
CABIB E, ROH D H, SCHMIDT M, et al. The yeast cell wall and septum as paradigms of cell growth and morphogenesis[J]. The Journal of Biological Chemistry, 2001, 276(23): 19679-19682.
|
[22] |
BERNARD M, LATGÉ J P. Aspergillus fumigatus cell wall: composition and biosynthesis[J]. Medical Mycology, 2001, 39(Suppl 1): 9-17.
|
[23] |
LEVIN D E. Cell wall integrity signaling in Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews: MMBR, 2005, 69(2): 262-291.
|
[24] |
FUJIKAWA T, KUGA Y, YANO S, et al. Dynamics of cell wall components of Magnaporthe grisea during infectious structure development[J]. Molecular Microbiology, 2009, 73(4): 553-570.
|
[25] |
QIAN H, SUN L X, WU M H, et al. The COPII subunit MoSec24B is involved in development, pathogenicity and autophagy in the rice blast fungus[J]. Frontiers in Plant Science, 2022, 13: 1074107.
|
[26] |
ZHAO N N, QIAN L, LUO G J, et al. Synthetic biology approaches to access renewable carbon source utilization in Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2018, 102(22): 9517-9529.
|
[27] |
RYTER S W, CLOONAN S M, CHOI A M K. Autophagy: a critical regulator of cellular metabolism and homeostasis[J]. Molecules and Cells, 2013, 36(1): 7-16.
|
[28] |
WANG Z Y, JENKINSON J M, HOLCOMBE L J, et al. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea[J]. Biochemical Society Transactions, 2005, 33(Pt 2): 384-388.
|
[29] |
LEVIN D E. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway[J]. Genetics, 2011, 189(4): 1145-1175.
|
[30] |
TURRÀ D, SEGORBE D, DI PIETRO A. Protein kinases in plant-pathogenic fungi: conserved regulators of infection[J]. Annual Review of Phytopathology, 2014, 52: 267-288.
|
[31] |
DE NOBEL H, RUIZ C, MARTIN H, et al. Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance[J]. Microbiology, 2000, 146 (Pt 9): 2121-2132.
|
[32] |
SCHWER B, LINDER P, SHUMAN S. Effects of deletion mutations in the yeast Ces1 protein on cell growth and morphology and on high copy suppression of mutations in mRNA capping enzyme and translation initiation factor 4A[J]. Nucleic Acids Research, 1998, 26(3): 803-809.
|
[33] |
MIZUNUMA M, HIRATA D, MIYAHARA K, et al. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast[J]. Nature, 1998, 392(6673): 303-306.
|
[34] |
ROSSIO V, YOSHIDA S. Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast[J]. The Journal of Cell Biology, 2011, 193(3): 445-454.
|
[35] |
JONASSON E M, ROSSIO V, HATAKEYAMA R, et al. Zds1/Zds2-PP2ACdc55 complex specifies signaling output from Rho1 GTPase[J]. The Journal of Cell Biology, 2016, 212(1): 51-61.
|
[36] |
ROSSIO V, MICHIMOTO T, SASAKI T, et al. Nuclear PP2A-Cdc55 prevents APC-Cdc20 activation during the spindle assembly checkpoint[J]. Journal of Cell Science, 2013, 126(Pt 19): 4396-4405.
|
[37] |
JÁTIVA S, CALABRIA I, MOYANO-RODRIGUEZ Y, et al. Cdc14 activation requires coordinated Cdk1-dependent phosphorylation of Net1 and PP2A-Cdc55 at anaphase onset[J]. Cellular and Molecular Life Sciences, 2019, 76(18): 3601-3620.
|