Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2636-2644.DOI: 10.3969/j.issn.1004-1524.20230864
• Plant Protection • Previous Articles Next Articles
WANG Xiaonan1(), FENG Xiaoxiao2, SHI Bin1, CHEN Enlei1, CHEN Mengli1, ZHENG Yongli3,*(
), WU Huiming1,*(
)
Received:
2023-07-12
Online:
2023-11-25
Published:
2023-12-04
CLC Number:
WANG Xiaonan, FENG Xiaoxiao, SHI Bin, CHEN Enlei, CHEN Mengli, ZHENG Yongli, WU Huiming. Identification of Bacillus velezensis ZN-S10 and its antification effect on tomato bacterial wilt[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2636-2644.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230864
生理生化指标测试 Physiological and biochemical index | ZN-S10菌株 ZN-S10 strain |
---|---|
氧化酶 Oxidase | + |
卵磷脂酶 Lecithinase | + |
过氧化氢酶 Catalase | + |
淀粉水解 Amylohydrolysis | + |
V-P 测定 V-P test | + |
甲基红 Methyl red | - |
吲哚 Indole | + |
氯霉素 Chloromycetin | - |
链霉素 Streptomycin | - |
卡那霉素 Kanamycin | - |
氨苄青霉素 Ampicillin | - |
Table 1 Physiological and biochemical identification results of endophytic bacterium ZN-S10
生理生化指标测试 Physiological and biochemical index | ZN-S10菌株 ZN-S10 strain |
---|---|
氧化酶 Oxidase | + |
卵磷脂酶 Lecithinase | + |
过氧化氢酶 Catalase | + |
淀粉水解 Amylohydrolysis | + |
V-P 测定 V-P test | + |
甲基红 Methyl red | - |
吲哚 Indole | + |
氯霉素 Chloromycetin | - |
链霉素 Streptomycin | - |
卡那霉素 Kanamycin | - |
氨苄青霉素 Ampicillin | - |
Fig.2 ZN-S10 phylogenetic tree based on rpoB and gyrA gene sequences The value at the branch is the support rate of each node obtained by repeating the Bootstrap method 1 000 times, with a scale of 0.050 as the evolution distance.
Fig.3 Antibacterial effect of Bacillus velezensis ZN-S10 against different pathogens The filter paper on the left side of the plate in the picture is CK, and the filter paper on the right side is ZN-S10. From left to right are Erwinia carotovora ZJUP0154-1, Pseudomonas viridifiava ZJUP0398-2, Dickeya dadantii ZAFU0898, Ralstonia solanacearum ZAFU0005, and Xanthomonas campestris ZJUP0463-1.
Fig.4 Inhibition rate of Bacillus velezensis ZN-S10 against five pathogens The data is mean ± standard error, and the different lowercase letters on the column indicate significant differences (P<0.05). The same as below.
处理 Treatment | 病情指数 Disease index | 相对防治效果 Relative control effect/% |
---|---|---|
ZN-S10 | 31.25 | 57.14 |
3%中生菌素 WP | 31.25 | 57.14 |
3% Zhongshengmycin WP | ||
MOCK2 | 72.92 |
Table 2 Effect of Bacillus velezensis ZN-S10 and 3% Zhongshengmycin WP on control of Ralstonia solanacearum
处理 Treatment | 病情指数 Disease index | 相对防治效果 Relative control effect/% |
---|---|---|
ZN-S10 | 31.25 | 57.14 |
3%中生菌素 WP | 31.25 | 57.14 |
3% Zhongshengmycin WP | ||
MOCK2 | 72.92 |
Fig.5 Control effect of ZN-S10 on Ralstonia solanacearum ZAFU0005 A, Clear water; B, Inoculate Ralstonia solanacearum ZAFU0005; C, Inoculate Ralstonia solanacearum ZAFU0005 after 7 days of root irrigation with 3% mycorrhizal WP; D, After 7 days of root irrigation with ZN-S10, Ralstonia solanacearum ZAFU0005 was inoculated.
Fig.6 MDA content changes of tomato MOCK, Clean water; T1, ZN-S10; T2, ZAFU0005; T3, ZN-S10+ZAFU0005. Under the same treatment time, the bars of different treatments marked with different lowercase letters showed significant difference (P<0.05).The same as below.
[1] | TANAMBELL H, QUEK S Y, BISHOP K S. Screening of in vitro health benefits of tangerine tomatoes[J]. Antioxidants, 2019, 8(7): 230. |
[2] | KOZUKUE N, KIM D S, CHOI S H, et al. Isomers of the tomato glycoalkaloids α-tomatine and dehydrotomatine: relationship to health benefits[J]. Molecules, 2023, 28(8): 3621. |
[3] | PUAH B P, JALIL J, ATTIQ A, et al. New insights into molecular mechanism behind anti-cancer activities of lycopene[J]. Molecules, 2021, 26(13): 3888. |
[4] | 王仁杰, 蔡红明, 夏海波, 等. 不同品种番茄的果实品质及感官评价[J]. 中国果菜, 2022, 42(7): 42-50. |
WANG R J, CAI H M, XIA H B, et al. Fruit quality and sensory evaluation of different tomato varieties[J]. China Fruit & Vegetable, 2022, 42(7): 42-50. (in Chinese with English abstract) | |
[5] | 郭娜, 吕广一, 赵熠, 等. 不同生物有机肥对日光温室番茄生长、产量和土壤养分的影响[J]. 蔬菜, 2023(1): 17-25. |
GUO N, LÜ G Y, ZHAO Y, et al. Effects of different bio-organic fertilizers on growth, yield of tomatoes and soil nutrients in solar greenhouse[J]. Vegetables, 2023(1): 17-25. (in Chinese with English abstract) | |
[6] | LIU J, WANG X W. Tomato diseases and pests detection based on improved yolo V3 convolutional neural network[J]. Frontiers in Plant Science, 2020, 11: 898. |
[7] | 唐微. 番茄常见病虫害危害症状及防治方法[J]. 现代农业科技, 2017(16): 109-110. |
TANG W. Symptoms and control methods of common tomato diseases and insect pests[J]. Modern Agricultural Science and Technology, 2017(16): 109-110. (in Chinese) | |
[8] | 裘辉, 魏延萍. 温室番茄病害的综合防治措施[J]. 吉林蔬菜, 2018(9): 29. |
QIU H, WEI Y P. Comprehensive control measures of tomato diseases in greenhouse[J]. Jilin Vegetable, 2018(9): 29. (in Chinese) | |
[9] | MEI L C, CHEN H M, DONG A Y, et al. Pesticide informatics platform (PIP): an international platform for pesticide discovery, residue, and risk evaluation[J]. Journal of Agricultural and Food Chemistry, 2022, 70(22): 6617-6623. |
[10] | 张德锋, 高艳侠, 可小丽, 等. 贝莱斯芽孢杆菌LF01基因组序列分析及其代谢产物的生防作用[J]. 水产学报, 2022, 46(2): 196-206. |
ZHANG D F, GAO Y X, KE X L, et al. Genomic analysis of Bacillus velezensis LF01 strain and the biocontrol effect of its secondary metabolites[J]. Journal of Fisheries of China, 2022, 46(2): 196-206. (in Chinese with English abstract) | |
[11] | GRADY E N, MACDONALD J, HO M T, et al. Characterization and complete genome analysis of the surfactin-producing, plant-protecting bacterium Bacillus velezensis 9D-6[J]. BMC Microbiology, 2019, 19(1): 5. |
[12] | CHRISTIE G, SETLOW P. Bacillus spore germination: Knowns, unknowns and what we need to learn[J]. Cellular Signalling, 2020, 74: 109729. |
[13] | LIU H, WANG Z G, XU W H, et al. Bacillus pumilus LZP02 promotes rice root growth by improving carbohydrate metabolism and phenylpropanoid biosynthesis[J]. Molecular Plant-Microbe Interactions, 2020, 33(10): 1222-1231. |
[14] | LI C Y, HU W C, PAN B, et al. Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato[J]. Pedosphere, 2017, 27(6): 1135-1146. |
[15] | 李生樟, 刘昭, 杨瑞环, 等. 一株拮抗水稻条斑病菌的蜡样芽孢杆菌的分离和鉴定[J]. 江苏农业科学, 2020, 48(7): 127-136. |
LI S Z, LIU Z, YANG R H, et al. Isolation and identification of a Bacillus cereus strain against plant pathogenic Xanthomonas oryzae[J]. Jiangsu Agricultural Sciences, 2020, 48(7): 127-136. (in Chinese) | |
[16] | UPRETI R, THOMAS P. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects[J]. Frontiers in Microbiology, 2015, 6: 255. |
[17] | 黄银, 马金彪, 李凯旋, 等. 新疆野果林苹果腐烂病病原菌鉴定及药用植物内生细菌对其抑菌效果[J]. 微生物学通报, 2023, 50(1): 175-184. |
HUANG Y, MA J B, LI K X, et al. Identification of pathogens causing apple Valsa canker in Xinjiang wild apple forests and antifungal effect of endophytic bacteria from medicinal plants on the pathogens[J]. Microbiology China, 2023, 50(1): 175-184. (in Chinese with English abstract) | |
[18] | 刘子瑶, 张岂源, 杨平, 等. 林下参内生生防细菌的分离鉴定及定殖能力[J]. 微生物学通报, 2023, 50(6): 2519-2531. |
LIU Z Y, ZHANG Q Y, YANG P, et al. Isolation and identification of endophytic biocontrol bacteria from understory Panax ginseng and study on colonization ability[J]. Microbiology China, 2023, 50(6): 2519-2531. (in Chinese with English abstract) | |
[19] | 宋光桃, 付美云, 张惠颖, 等. 5种植物内生菌的分离及其拮抗月季黑斑病菌的筛选[J]. 湖南生态科学学报, 2021, 8(4): 59-64. |
SONG G T, FU M Y, ZHANG H Y, et al. Isolation of endophytes from 5 plants and screening of their antagonistic strains to rose black spot disease[J]. Journal of Hunan Ecological Science, 2021, 8(4): 59-64. (in Chinese with English abstract) | |
[20] | 李同灵. 内生菌和根际微生物对三种牧草的生长和抗病作用研究[D]. 南充: 西华师范大学, 2020. |
LI T L. Study on the promoting and disease resistance of three forage endophytes and rhizosphere microorganisms[D]. Nanchong: China West Normal University, 2020. (in Chinese with English abstract) | |
[21] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
[22] | TAN S Y, DONG Y, LIAO H P, et al. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato[J]. Pest Management Science, 2013, 69(11): 1245-1252. |
[23] | 方中达. 植病研究方法[M]. 北京: 中国农业出版社, 1998. |
[24] | 王丽丽, 周旭东, 李国安, 等. 番茄青枯病病原菌拮抗菌株的筛选及其田间防控作用研究[J]. 植物保护, 2017, 43(1): 182-185, 223. |
WANG L L, ZHOU X D, LI G A, et al. Screening and identifying of antagonistic bacteria against Ralstonia solanacearum and the control effects on tomato bacterial wilt in the field[J]. Plant Protection, 2017, 43(1): 182-185, 223. (in Chinese with English abstract) | |
[25] | 成娜娜. 贝莱斯芽孢杆菌J-4对桃树根腐病的生防效果及其促生作用研究[D]. 泰安: 山东农业大学, 2021. |
CHENG N N. Study on the biocontrol effect and growth promotion of Bacillus velezensis J-4 on peach root rot[D]. Taian: Shandong Agricultural University, 2021. (in Chinese with English abstract) | |
[26] | DAS S, DASH H R, MANGWANI N, et al. Understanding molecular identification and polyphasic taxonomic approaches for genetic relatedness and phylogenetic relationships of microorganisms[J]. Journal of Microbiological Methods, 2014, 103: 80-100. |
[27] | LIU Y, ŠTEFANIČ P, MIAO Y Z, et al. Housekeeping gene gyrA, a potential molecular marker for Bacillus ecology study[J]. AMB Express, 2022, 12(1): 133. |
[28] | 刘霞, 陆喆晓, 马紫程, 等. 贝莱斯芽孢杆菌Bv-303对水稻白叶枯病菌的拮抗活性及其应用[J]. 生物工程学报, 2023, 39(2): 741-754. |
LIU X, LU Z X, MA Z C, et al. Antagonistic activity and application of Bacillus velezensis strain Bv-303 against rice bacterial-blight disease caused by Xanthomonas oryzae pv. oryzae[J]. Chinese Journal of Biotechnology, 2023, 39(2): 741-754. (in Chinese with English abstract) | |
[29] | 戚菊峰. 铁皮石斛茎腐病病原菌鉴定及Bacillus velezensis D-12的防病促生研究[D]. 杭州: 浙江大学, 2021. |
QI J F. Study on the pathogen identification of stem rot in Dendrobium officinale and the plant growth promotion and biocontrol effect of Bacillus velezensis D-12[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) | |
[30] | FAN B, WANG C, SONG X F, et al. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol[J]. Frontiers in Microbiology, 2018, 9: 2491. |
[31] | JIN P F, WANG Y, TAN Z, et al. Antibacterial activity and rice-induced resistance, mediated by C15 surfactin A, in controlling rice disease caused by Xanthomonas oryzae pv. oryzae[J]. Pesticide Biochemistry and Physiology, 2020, 169: 104669. |
[32] | 万宣伍, 田卉, 张伟, 等. 植物诱导抗性的机理及应用[J]. 植物医学, 2022, 1(1): 18-25. |
WAN X W, TIAN H, ZHANG W, et al. Mechanism and application of induced resistance in plant[J]. Plant Health and Medicine, 2022, 1(1): 18-25. (in Chinese with English abstract) | |
[33] | 裴冬丽, 张红岩, 张贺, 等. 干旱胁迫对番茄幼苗叶片SOD、POD和PAL活性的影响[J]. 吉林农业科学, 2015, 40(4): 83-86. |
PEI D L, ZHANG H Y, ZHANG H, et al. Effects of drought stress on SOD, POD and PAL activity in tomato seedling leaves[J]. Journal of Jilin Agricultural Sciences, 2015, 40(4): 83-86. (in Chinese with English abstract) |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||