Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (8): 1945-1956.DOI: 10.3969/j.issn.1004-1524.20231144
• Review • Previous Articles
Received:
2023-09-25
Online:
2024-08-25
Published:
2024-09-06
Contact:
LIU Peng
CLC Number:
ZHANG Xin, LIU Peng. Research progress of cis-regulatory elements in plants[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1945-1956.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231144
Fig.1 Schematic representation of chromatin features of CRMs in different states A, Active enhancer. Histone acetylation modifications are enriched around CREs. TFs as well as cofactors interact with CREs, which target the gene’s promoter to activate its transcription. B, Repressed CRM. Due to the occupation of Polycomb Group proteins and H3K27me3 modification at CREs, where local chromatin structure is dense, CREs aren’t able to bind to TFs, resulting in transcriptional silencing of the target gene. C, Poised CRM. Although CREs are located in the open chromatin region with low levels of histone acetylation modification, Polycomb Group proteins and H3K27me3 modification still exist, so only a few CREs can bind to TFs. Cofactor, Auxiliary factor; TF, Transcription factor; CRE, Cis-regulatory element; P, Promoter; CDS, Gene coding sequence; TSS; Transcription start site; Polycomb Group, Polycomb Group protein.
Fig.2 Schematic diagram of high-throughput identification method for CRM ATAC-seq, Assay for transposase accessible chromatin sequencing; DNase-seq, DNase I sequencing; FAIRE-seq, Formaldehyde assisted isolation of regulatory element sequencing; ChIP-seq, Chromatin immunoprecipitation sequencing; ChIA-PET, Chromatin interaction analysis by paired-end tag sequencing; Hi-ChIP, In situ Hi-C followed by chromatin immunoprecipitation.
[1] | JIANG J M. The ‘dark matter’ in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin[J]. Current Opinion in Plant Biology, 2015, 24: 17-23. |
[2] | SCHMITZ R J, GROTEWOLD E, STAM M. Cis-regulatory sequences in plants: their importance, discovery, and future challenges[J]. The Plant Cell, 2022, 34(2): 718-741. |
[3] | ANDERSSON R, SANDELIN A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nature Reviews Genetics, 2020, 21(2): 71-87. |
[4] | OKA R, ZICOLA J, WEBER B, et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize[J]. Genome Biology, 2017, 18(1): 137. |
[5] | CRISP P A, MARAND A P, NOSHAY J M, et al. Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23991-24000. |
[6] | FENLEY A T, ANANDAKRISHNAN R, KIDANE Y H, et al. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core[J]. Epigenetics & Chromatin, 2018, 11(1): 11. |
[7] | CREYGHTON M P, CHENG A W, WELSTEAD G G, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21931-21936. |
[8] | BARRERA L O, LI Z R, SMITH A D, et al. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs[J]. Genome Research, 2008, 18(1): 46-59. |
[9] | SHLYUEVA D, STAMPFEL G, STARK A. Transcriptional enhancers: from properties to genome-wide predictions[J]. Nature Reviews Genetics, 2014, 15(4): 272-286. |
[10] | NGAN C Y, WONG C H, TJONG H, et al. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development[J]. Nature Genetics, 2020, 52(3): 264-272. |
[11] | KOENECKE N, JOHNSTON J, HE Q Y, et al. Drosophila poised enhancers are generated during tissue patterning with the help of repression[J]. Genome Research, 2017, 27(1): 64-74. |
[12] | RADA-IGLESIAS A, BAJPAI R, SWIGUT T, et al. A unique chromatin signature uncovers early developmental enhancers in humans[J]. Nature, 2011, 470(7333): 279-283. |
[13] | DU Z, LI H, WEI Q, et al. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. japonica[J]. Molecular Plant, 2013, 6(5): 1463-1472. |
[14] | ZHU B, ZHANG W L, ZHANG T, et al. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures[J]. The Plant Cell, 2015, 27(9): 2415-2426. |
[15] | NIEDERHUTH C E, BEWICK A J, JI L X, et al. Widespread natural variation of DNA methylation within angiosperms[J]. Genome Biology, 2016, 17(1): 194. |
[16] | ZHANG X Y, YAZAKI J, SUNDARESAN A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6): 1189-1201. |
[17] | O’MALLEY R C, HUANG S S C, SONG L, et al. Cistrome and epicistrome features shape the regulatory DNA landscape[J]. Cell, 2016, 165(5): 1280-1292. |
[18] | ORLANSKI S, LABI V, REIZEL Y, et al. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): 5018-5023. |
[19] | ZHONG S L, FEI Z J, CHEN Y R, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening[J]. Nature Biotechnology, 2013, 31(2): 154-159. |
[20] | YU A, LEPÈRE G, JAY F, et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2389-2394. |
[21] | SARTORELLI V, LAUBERTH S M. Enhancer RNAs are an important regulatory layer of the epigenome[J]. Nature Structural & Molecular Biology, 2020, 27(6): 521-528. |
[22] | HOU Y, ZHANG R X, SUN X. Enhancer LncRNAs influence chromatin interactions in different ways[J]. Frontiers in Genetics, 2019, 10: 936. |
[23] | HAN Z Z, LI W. Enhancer RNA: what we know and what we can achieve[J]. Cell Proliferation, 2022, 55(4): e13202. |
[24] | LIANG J, ZHOU H F, GERDT C, et al. Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 14121-14126. |
[25] | PNUELI L, RUDNIZKY S, YOSEFZON Y, et al. RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin α-subunit gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14): 4369-4374. |
[26] | HETZEL J, DUTTKE S H, BENNER C, et al. Nascent RNA sequencing reveals distinct features in plant transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12316-12321. |
[27] | WU C H, YAMAGUCHI Y, BENJAMIN L R, et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila[J]. Genes & Development, 2003, 17(11): 1402-1414. |
[28] | GORBOVYTSKA V, KIM S K, KUYBU F, et al. Enhancer RNAs stimulate PolⅡ pause release by harnessing multivalent interactions to NELF[J]. Nature Communications, 2022, 13(1): 2429. |
[29] | SCHAUKOWITCH K, JOO J Y, LIU X H, et al. Enhancer RNA facilitates NELF release from immediate early genes[J]. Molecular Cell, 2014, 56(1): 29-42. |
[30] | THIEFFRY A, VIGH M L, BORNHOLDT J, et al. Characterization of Arabidopsis thaliana promoter bidirectionality and antisense RNAs by inactivation of nuclear RNA decay pathways[J]. The Plant Cell, 2020, 32(6): 1845-1867. |
[31] | LAMBERT S A, JOLMA A, CAMPITELLI L F, et al. The human transcription factors[J]. Cell, 2018, 172(4): 650-665. |
[32] | WEIRAUCH M T, YANG A, ALBU M, et al. Determination and inference of eukaryotic transcription factor sequence specificity[J]. Cell, 2014, 158(6): 1431-1443. |
[33] | ZHOU J B, TOH S H M, TAN T K, et al. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell lymphoma[J]. Molecular Cancer, 2023, 22(1): 69. |
[34] | LAI X L, STIGLIANI A, LUCAS J, et al. Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing[J]. Nucleic Acids Research, 2020, 48(17): 9637-9648. |
[35] | BRAND U, FLETCHER J C, HOBE M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479): 617-619. |
[36] | SCHOOF H, LENHARD M, HAECKER A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6): 635-644. |
[37] | LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071): 1172-1175. |
[38] | IKEDA M, MITSUDA N, OHME-TAKAGI M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning[J]. The Plant Cell, 2009, 21(11): 3493-3505. |
[39] | LOHMANN J U, HONG R L, HOBE M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis[J]. Cell, 2001, 105(6): 793-803. |
[40] | BAI L, MOROZOV A V. Gene regulation by nucleosome positioning[J]. Trends in Genetics, 2010, 26(11): 476-483. |
[41] | JIN R, KLASFELD S, ZHU Y, et al. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate[J]. Nature Communications, 2021, 12(1): 626. |
[42] | LEE C S, FRIEDMAN J R, FULMER J T, et al. The initiation of liver development is dependent on Foxa transcription factors[J]. Nature, 2005, 435(7044): 944-947. |
[43] | IWAFUCHI-DOI M, DONAHUE G, KAKUMANU A, et al. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation[J]. Molecular Cell, 2016, 62(1): 79-91. |
[44] | ZHU H, WANG G H, QIAN J. Transcription factors as readers and effectors of DNA methylation[J]. Nature Reviews Genetics, 2016, 17(9): 551-565. |
[45] | TAO Z, SHEN L S, GU X F, et al. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants[J]. Nature, 2017, 551(7678): 124-128. |
[46] | PAJORO A, MADRIGAL P, MUIÑO J M, et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[J]. Genome Biology, 2014, 15(3): R41. |
[47] | WU C Y, LI X J, YUAN W Y, et al. Development of enhancer trap lines for functional analysis of the rice genome[J]. The Plant Journal, 2003, 35(3): 418-427. |
[48] | MCGARRY R C, AYRE B G. A DNA element between At4g28630 and At4g28640 confers companion-cell specific expression following the sink-to-source transition in mature minor vein phloem[J]. Planta, 2008, 228(5): 839-849. |
[49] | STAM M, BELELE C, DORWEILER J E, et al. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation[J]. Genes & Development, 2002, 16(15): 1906-1918. |
[50] | ZHENG L L, MCMULLEN M D, BAUER E, et al. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays[J]. Journal of Experimental Botany, 2015, 66(13): 3917-3930. |
[51] | DU Y F, LIU L, PENG Y, et al. UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize[J]. PLoS Genetics, 2020, 16(4): e1008764. |
[52] | BELELE C L, SIDORENKO L, STAM M, et al. Specific tandem repeats are sufficient for paramutation-induced trans-generational silencing[J]. PLoS Genetics, 2013, 9(10): e1003773. |
[53] | STUDER A, ZHAO Q, ROSS-IBARRA J, et al. Identification of a functional transposon insertion in the maize domestication gene tb1[J]. Nature Genetics, 2011, 43(11): 1160-1163. |
[54] | LU Z F, HOFMEISTER B T, VOLLMERS C, et al. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes[J]. Nucleic Acids Research, 2017, 45(6): e41. |
[55] | MARAND A P, CHEN Z L, GALLAVOTTI A, et al. A cis-regulatory atlas in maize at single-cell resolution[J]. Cell, 2021, 184(11): 3041-3055. |
[56] | BUENROSTRO J D, WU B J, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490. |
[57] | CUSANOVICH D A, DAZA R, ADEY A, et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing[J]. Science, 2015, 348(6237): 910-914. |
[58] | DORRITY M W, ALEXANDRE C M, HAMM M O, et al. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution[J]. Nature Communications, 2021, 12(1): 3334. |
[59] | FARMER A, THIBIVILLIERS S, RYU K H, et al. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level[J]. Molecular Plant, 2021, 14(3): 372-383. |
[60] | HARING M, OFFERMANN S, DANKER T, et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization[J]. Plant Methods, 2007, 3: 11. |
[61] | LU Z F, MARAND A P, RICCI W A, et al. The prevalence, evolution and chromatin signatures of plant regulatory elements[J]. Nature Plants, 2019, 5(12): 1250-1259. |
[62] | RICCI W A, LU Z F, JI L X, et al. Widespread long-range cis-regulatory elements in the maize genome[J]. Nature Plants, 2019, 5(12): 1237-1249. |
[63] | PENG Y, XIONG D, ZHAO L, et al. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize[J]. Nature Communications, 2019, 10(1): 2632. |
[64] | LOUWERS M, BADER R, HARING M, et al. Tissue-and expression level-specific chromatin looping at maize b1 epialleles[J]. The Plant Cell, 2009, 21(3): 832-842. |
[65] | LI E, LIU H, HUANG L L, et al. Long-range interactions between proximal and distal regulatory regions in maize[J]. Nature Communications, 2019, 10(1): 2633. |
[66] | ARNOLD C D, GERLACH D, STELZER C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq[J]. Science, 2013, 339(6123): 1074-1077. |
[67] | TIAN W, HUANG X, OUYANG X H. Genome-wide prediction of activating regulatory elements in rice by combining STARR-seq with FACS[J]. Plant Biotechnology Journal, 2022, 20(12): 2284-2297. |
[68] | JORES T, TONNIES J, DORRITY M W, et al. Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves[J]. The Plant Cell, 2020, 32(7): 2120-2131. |
[69] | JORES T, TONNIES J, WRIGHTSMAN T, et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters[J]. Nature Plants, 2021, 7(6): 842-855. |
[70] | SAEED S, USMAN B, SHIM S, et al. CRISPR/Cas-mediated editing of cis-regulatory elements for crop improvement[J]. Plant Science, 2022, 324: 111435. |
[71] | OSTERWALDER M, BAROZZI I, TISSIÈRES V, et al. Enhancer redundancy provides phenotypic robustness in mammalian development[J]. Nature, 2018, 554(7691): 239-243. |
[72] | HIRSCH C D, SPRINGER N M. Transposable element influences on gene expression in plants[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2017, 1860(1): 157-165. |
[73] | FAGNY M, KUIJJER M L, STAM M, et al. Identification of key tissue-specific, biological processes by integrating enhancer information in maize gene regulatory networks[J]. Frontiers in Genetics, 2020, 11: 606285. |
[74] | LYNCH V J, LECLERC R D, MAY G, et al. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals[J]. Nature Genetics, 2011, 43(11): 1154-1159. |
[75] | BATISTA R A, MORENO-ROMERO J, QIU Y C, et al. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons[J]. eLife, 2019, 8: e50541. |
[76] | ZHAO H N, ZHANG W L, CHEN L F, et al. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome[J]. Plant Physiology, 2018, 176(4): 2789-2803. |
[77] | CHUONG E B, ELDE N C, FESCHOTTE C. Regulatory activities of transposable elements: from conflicts to benefits[J]. Nature Reviews Genetics, 2017, 18(2): 71-86. |
[78] | SALVI S, SPONZA G, MORGANTE M, et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11376-11381. |
[79] | FENG D, LIANG Z, WANG Y F, et al. Chromatin accessibility illuminates single-cell regulatory dynamics of rice root tips[J]. BMC Biology, 2022, 20(1): 274. |
[80] | ZHANG T Q, CHEN Y, LIU Y, et al. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root[J]. Nature Communications, 2021, 12(1): 2053. |
[81] | WU H G, LI X, JIAN F C, et al. Highly sensitive single-cell chromatin accessibility assay and transcriptome coassay with METATAC[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2206450119. |
[82] | TU X Y, MARAND A P, SCHMITZ R J, et al. A combinatorial indexing strategy for low-cost epigenomic profiling of plant single cells[J]. Plant Communications, 2022, 3(4): 100308. |
[83] | OUYANG W Z, LUAN S P, XIANG X, et al. Profiling plant histone modification at single-cell resolution using snCUT&Tag[J]. Plant Biotechnology Journal, 2022, 20(3): 420-422. |
[84] | ZHOU S L, JIANG W, ZHAO Y, et al. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes[J]. Nature Plants, 2019, 5(8): 795-800. |
[85] | YOCCA A E, EDGER P P. Current status and future perspectives on the evolution of cis-regulatory elements in plants[J]. Current Opinion in Plant Biology, 2022, 65: 102139. |
[86] | WU X W, LIANG Y, GAO H B, et al. Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20[J]. Molecular Plant, 2021, 14(6): 997-1011. |
[1] | QI Xueli, LI Ying, DUAN Junzhi. Application of salt tolerance genes in wheat salt tolerance genetic engineering [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1447-1457. |
[2] | NIU Yu, LI Jing, WANG Junwen, LI Ruirui, TIAN Qiang, WU Yue, YU Jihua. Research progress of anthocyanin biosynthesis, regulation, bioactivity and detection in higher plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 978-996. |
[3] | ZHANG Luhe, WANG Duofeng, ZHANG De, ZHANG Guangzhong, ZHAO Tong, LYU Binyan, ZHANG Yangjun, LI Yi. Identification and bioinformatics analysis of novel-miR16 target gene ZjTCP4 in Chinese jujube [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 534-543. |
[4] | CHEN Shangyu, SONG Xuewei, QI Zhenyu, ZHOU Yanhong, YU Jingquan, XIA Xiaojian. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690-703. |
[5] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[6] | DONG Feiyan, SONG Jinghan, ZHANG Huadong, WU Haotian, LI Yaqian, LIU Mengwei, GAO Chunbao, FANG Zhengwu, LIU Yike. Clonging and expression analysis of TaPAT1-2D gene in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 23-32. |
[7] | XIA Yuqi, SUN Yu, LIU Zhixin, SUN Ruiqing, YANG Nan, PU Jinji, ZHANG He. Genome-wide identification and bioinformatics analysis of BES1 transcription factor family in mango [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 984-994. |
[8] | DENG Zheyu, WANG Yiting, WANG Yingjie, HU Cai, WU Yuhui, ZHAO Zongyi, ZUO Qisheng, ZHANG Yani. Construction of eukaryotic expression vector of chicken gga-miR-31-5p promoter and prediction of its transcription factor binding sites [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 713-719. |
[9] | LI Xiaolan, ZHANG Rui, HAO Lanlan, WANG Hong. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. |
[10] | JIA Liqiang, ZHAO Qiufang, CHEN Shu, DING Bo. Expression analysis of bZIP G subfamily genes in maize [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 221-231. |
[11] | HE Jiaqi, ZHAI Ying, ZHANG Jun, QIU Shuang, LI Mingyang, ZHAO Yan, ZHANG Meijuan, MA Tianyi. Cloning and expression analysis of GmDof1.5 in soybean under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 1-7. |
[12] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
[13] | ZHANG Guwen, SHEN Li, ZHENG Huazhang, LIU Na, FENG Zhijuan, GONG Yaming. Research advances of zinc finger protein transcription factor Di19 in regulation of soybean responding to drought stress [J]. , 2020, 32(2): 373-382. |
[14] | LI Junxia, WANG Chunyi, DING Yutao, DAI Shutao, ZHU Cancan, SONG Yinghui, QIN Na, CHEN Yuxiang. Progress on application of MYB transcription factor in plant salt tolerance genetic engineering [J]. , 2020, 32(10): 1910-1920. |
[15] | LIU Huijie, XU Heng, QIU Wenyi, LI Xiaofang, ZHANG Hua, ZHU Ying, LI Chunshou, WANG Liangchao. Roles of bZIP transcription factors in plant growth and development and abiotic stress response [J]. , 2019, 31(7): 1205-1214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||