[1] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [2] 郭澎涛, 李茂芬, 罗微, 等. 基于多源环境变量和随机森林的橡胶园土壤全氮含量预测[J]. 农业工程学报,2015, 31(5):194-202. GUO P T, LI M F, LUO W, et al. Prediction of soil total nitrogen for rubber plantation at regional scale based on environmental variables and random forest approach[J]. Transactions of the Chinese Society of Agricultural Engineering , 2015, 31(5): 194-202. (in Chinese with English abstract) [3] 曹祥会, 龙怀玉, 周脚根, 等. 河北省表层土壤有机碳和全氮空间变异特征性及影响因子分析[J]. 植物营养与肥料学报, 2016, 22(4): 937-948. CAO X H, LONG H Y, ZHOU J G, et al. Analysis of spatial variability and influencing factors of topsoil organic carbon and total nitrogen in Hebei Province[J]. Journal of Plant Nutrition and Fertilizer , 2016, 22(4): 937-948. (in Chinese with English abstract) [4] 李楠, 徐东瑞, 吴杨洁. 土壤养分含量的协同克里格法插值研究[J]. 浙江农业学报,2011, 23(5): 1001-1006. LI N, XU D R, WU Y J. Spatial distribution with different sampling numbers of soil nutrient using Cokriging[J]. Acta Agriculturae Zhejiangensis , 2011, 23(5): 1001-1006. (in Chinese with English abstract) [5] THOMPSON J A, PENA-YEWTUKHIW E M, GROVE J H. Soil-landscape modeling across a physiographic region: topographic patterns and model transportability[J]. Geoderma , 2006, 133(1):57-70. [6] 黄安, 杨联安, 杜挺, 等. 基于多元成土因素的土壤有机质空间分布分析[J]. 干旱区地理,2015, 38(5): 994-1003. HUANG A, YANG L A, DU T, et al. Spatial distribution of the soil organic matter based on multiple soil factors[J]. Arid Land Geography , 2015, 38(5): 994-1003. (in Chinese with English abstract) [7] 黄安. 农耕区土壤养分空间分布的影响因素分析与制图[D]. 西安:西北大学, 2016. HUANG A. The analysis of influenced factors and mapping to spatial distribution of soil nutrient in farming area[D]. Xi'an: Northwest University, 2016. (in Chinese with English abstract) [8] 李启权, 王昌全, 张文江,等. 基于神经网络模型和地统计学方法的土壤养分空间分布预测[J]. 应用生态学报,2013, 24(2):459-466. LI Q Q, WANG C Q, ZHANG W J, et al. Prediction of soil nutrients spatial distribution based on neural network model combined with goestatistics[J]. Chinese Journal of Applied Ecology , 2013, 24(2): 459-466. [9] BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and regression trees[M]. Belmont: Wadsworth International Group, 1984. [10] ITO E, ONO K, ITO Y M, et al. A neural network approach to simple prediction of soil nitrification potential: a case study in Japanese temperate forests[J]. Ecological Modelling , 2008, 219(1): 200-211. [11] GUO P T, WU W, SHENG Q K, et al. Prediction of soil organic matter using artificial neural network and topographic indicators in hilly areas[J]. Nutrient Cycling in Agroecosystems , 2013, 95(3): 333-344. [12] LI Q Q, YUE T X, WANG C Q, et al. Spatially distributed modeling of soil organic matter across China: an application of artificial neural network approach[J]. Catena , 2013, 104: 210-218. [13] GRIMM R, BEHRENS T, MÄRKER M, et al. Soil organic carbon concentrations and stocks on Barro Colorado Island: digital soil mapping using Random Forests analysis[J]. Geoderma , 2008, 146(1):102-113. [14] WIESMEIER M, BARTHOLD F, BLANK B, et al. Digital mapping of soil organic matter stocks using Random Forest modeling in a semi-arid steppe ecosystem[J]. Plant & Soil , 2011, 340(1/2): 7-24. [15] GUO P T, LI M F, LUO W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals kriging approach[J]. Geoderma ,2015, 237/238:49-59. [16] YANG R M, ZHANG G L, LIU F, et al. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem[J]. Ecological Indicators , 2016, 60: 870-878. [17] WIESMEIER M, BARTHOLD F, SPÖRLEIN P, et al. Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany)[J]. Geoderma Regional , 2014, 1(6): 67-68. [18] 王茵茵. 基于RS数据与RF算法的陕西省土壤有机质预测研究[D]. 杨凌:西北农林科技大学, 2016. WANG Y Y. Soil organic matter prediction based on RS data and RF model in Shaanxi Province[D]. Yangling: Northwest A&F University, 2016. [19] 齐雁冰, 王茵茵, 陈洋, 等. 基于遥感与随机森林算法的陕西省土壤有机质空间预测[J]. 自然资源学报,2017, 32(6): 1074-1086. QI Y B, WANG Y Y, CHEN Y, et al. Soil organic matter prediction based on remote sensing data and Random Forest model in Shaanxi Province[J]. Journal of Natural Resources , 2017, 32(6): 1074-1086. (in Chinese with English abstract) [20] BREIMAN L. Random forests[J]. Machine Learning , 2001, 45(1):5-32. [21] 王茵茵, 齐雁冰, 陈洋, 等. 基于多分辨率遥感数据与随机森林算法的土壤有机质预测研究[J]. 土壤学报,2016, 53(2):342-354. WANG Y Y,QI Y B,CHEN Y, et al. Prediction of soil organic matter based on multi-resolution remote sensing data and random forest algorithm[J]. Acta Pedologica Sinica , 2016, 53(2): 342-354. (in Chinese with English abstract) [22] 赵业婷, 常庆瑞, 李志鹏,等. 1983—2009 年西安市郊区耕地土壤有机质空间特征与变化[J]. 农业工程学报,2013, 29(2):132-140. ZHAO Y T, CHANG Q R, LI Z P, et al. Spatial characteristics and changes of soil organic matter for cultivated land in suburban area of Xi'an from 1983 to 2009[J]. Transactions of the Chinese Society of Agricultural Engineering , 2013, 29(2): 132-140. (in Chinese with English abstract) [23] 全国农业技术推广服务中心. 北方果树测土配方施肥技术[M]. 北京: 中国农业出版社, 2009. [24] 李百云,刘旭峰,金会翠,等. 陕西眉县部分猕猴桃果园土壤主要养分状况分析[J]. 西北农业学报,2008, 17(3):215-218. LI B Y, LIU X F, JIN H C, et al. Analysis on soil nutrition of kiwifruit orchards in Meixian County of Shaanxi Province[J]. Acta Agriculturae Boreali-Occidentalis Sinica , 2008, 17(3): 215-218. (in Chinese with English abstract) [25] 雷宝佳, 杨联安, 张林森, 等. 猕猴桃果园土壤养分空间变异性分析:以陕西周至县为例[J]. 西北大学学报(自然科学版), 2015, 45(2):323-326. LEI B J, YANG L A, ZHANG L S, et al. Analysis on spatial variability of soil nutrition of kiwifruit orchards: taking Zhouzhi County of Shaanxi Province as a case[J]. Journal of Northwest University ( Natural Science Edition ), 2015, 45(2): 323-326. (in Chinese with English abstract) [26] 张彬, 杨联安, 冯武焕, 等. 基于改进TOPSIS和COK的土壤养分综合评价[J]. 干旱区资源与环境, 2016, 30(7):180-185. ZHANG B, YANG L A, FENG W H, et al. Comprehensive evaluation of soil nutrients based on improved TOPSIS and COK[J]. Journal of Arid Land Resources and Environment , 2016, 30(7): 180-185. (in Chinese with English abstract) [27] 余胜男, 陈元芳, 顾圣华, 等. 随机森林在降水量长期预报中的应用[J]. 南水北调与水利科技,2016, 14(1):78-83. YU S N,CHEN Y F,GU S H,et al.Long-term rainfall forecasting based on random forest[J]. South-to-North Water Transfers and Water Science & Technology ,2016,14(1):78-83. (in Chinese with English abstract) |