Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (3): 471-479.DOI: 10.3969/j.issn.1004-1524.2022.03.07
• Animal Science • Previous Articles Next Articles
DING Yanling(), WANG Pengfei, YANG Chaoyun, ZHOU Xiaonan, ZHAO Zhiyan, ZHANG Yanfeng, SHI Yuan- gang, KANG Xiaolong(
)
Received:
2021-06-08
Online:
2022-03-25
Published:
2022-03-30
Contact:
KANG Xiaolong
CLC Number:
DING Yanling, WANG Pengfei, YANG Chaoyun, ZHOU Xiaonan, ZHAO Zhiyan, ZHANG Yanfeng, SHI Yuan- gang, KANG Xiaolong. Prediction of target genes and tissue expression analysis of miR-144 in cattle[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 471-479.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.03.07
数据库名称 Databasename | 功能 Function | 网址 Website |
---|---|---|
miRBase | miRNA序列数据库miRNA sequence database | http://www.mirbase.org/index.shtml/ |
TargetScan | miRNA靶基因预测Prediction of miRNA target genes | http://www.targetscan.org/ |
miRWalk | miRNA靶基因预测Prediction of miRNA target genes | http://mirwalk.umm.uni-heidelberg.de/ |
miRDB | miRNA靶基因预测Prediction of miRNA target genes | http://www.mirdb.org/ |
Veney | 维恩图绘制Drawing of wenn diagram | http//bioinfogp.cnb.csic.es/tools/Venny/index.html |
miRTarbase | miRNA实验验证靶基因数据库 | http://mirtar-base.mbc.nctu.edu.tw/ |
Validation of target genes database by miRNA experiment | ||
DAVID | 功能注释Function notes | https://david.ncifcrf.gov/ |
Table 1 Name of database and website
数据库名称 Databasename | 功能 Function | 网址 Website |
---|---|---|
miRBase | miRNA序列数据库miRNA sequence database | http://www.mirbase.org/index.shtml/ |
TargetScan | miRNA靶基因预测Prediction of miRNA target genes | http://www.targetscan.org/ |
miRWalk | miRNA靶基因预测Prediction of miRNA target genes | http://mirwalk.umm.uni-heidelberg.de/ |
miRDB | miRNA靶基因预测Prediction of miRNA target genes | http://www.mirdb.org/ |
Veney | 维恩图绘制Drawing of wenn diagram | http//bioinfogp.cnb.csic.es/tools/Venny/index.html |
miRTarbase | miRNA实验验证靶基因数据库 | http://mirtar-base.mbc.nctu.edu.tw/ |
Validation of target genes database by miRNA experiment | ||
DAVID | 功能注释Function notes | https://david.ncifcrf.gov/ |
基因 Gene | 引物序列(5'→3') Primer sequence(5'→3') | 引物长度 Primer length/bp |
---|---|---|
miR-144 | RTprimer:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTAGTA | 50 |
F:CGCGCGTACAGTATAGATGATG | 23 | |
R:AGTGCAGGGTCCGAGGTATT | 20 | |
18S RNA | F:GTGGTGTTGAGGAAAGCAGACA | 22 |
R:TGATCACACGTTCCACCTCATC | 22 |
Table 2 Information of quantitative primer of miR-144
基因 Gene | 引物序列(5'→3') Primer sequence(5'→3') | 引物长度 Primer length/bp |
---|---|---|
miR-144 | RTprimer:GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCTAGTA | 50 |
F:CGCGCGTACAGTATAGATGATG | 23 | |
R:AGTGCAGGGTCCGAGGTATT | 20 | |
18S RNA | F:GTGGTGTTGAGGAAAGCAGACA | 22 |
R:TGATCACACGTTCCACCTCATC | 22 |
物种Species | 登录号Accession No. | 序列Sequence(5'~3') |
---|---|---|
牛Bos taurus | MIMAT0009234 | UACAGUAUAGAUGAUGUACUAG |
马Equus caballus | MIMAT0013024 | UACAGUAUAGAUGAUGUACU |
猪Sus scrofa | MIMAT0025364 | UACAGUAUAGAUGAUGUAC |
狗Canis lupus familiaris | MIMAT0006734 | UACAGUAUAGAUGAUGUACUAG |
鸡Gallus | MIMAT0003776 | CUACAGUAUAGAUGAUGUACUC |
小鼠Mus musculus | MIMAT0000156 | UACAGUAUAGAUGAUGUACU |
家鼠Rattus norvegicus | MIMAT0000850 | UACAGUAUAGAUGAUGUACU |
人Homo sapiens | MIMAT0000436 | UACAGUAUAGAUGAUGUACU |
黑猩猩Pan troglodytes | MIMAT0002262 | UACAGUAUAGAUGAUGUACUAG |
斑马鱼Brachydaniorerio var | MIMAT0001841 | UACAGUAUAGAUGAUGUACU |
Table 3 Mature sequence of miR-144 from multiple species
物种Species | 登录号Accession No. | 序列Sequence(5'~3') |
---|---|---|
牛Bos taurus | MIMAT0009234 | UACAGUAUAGAUGAUGUACUAG |
马Equus caballus | MIMAT0013024 | UACAGUAUAGAUGAUGUACU |
猪Sus scrofa | MIMAT0025364 | UACAGUAUAGAUGAUGUAC |
狗Canis lupus familiaris | MIMAT0006734 | UACAGUAUAGAUGAUGUACUAG |
鸡Gallus | MIMAT0003776 | CUACAGUAUAGAUGAUGUACUC |
小鼠Mus musculus | MIMAT0000156 | UACAGUAUAGAUGAUGUACU |
家鼠Rattus norvegicus | MIMAT0000850 | UACAGUAUAGAUGAUGUACU |
人Homo sapiens | MIMAT0000436 | UACAGUAUAGAUGAUGUACU |
黑猩猩Pan troglodytes | MIMAT0002262 | UACAGUAUAGAUGAUGUACUAG |
斑马鱼Brachydaniorerio var | MIMAT0001841 | UACAGUAUAGAUGAUGUACU |
Fig.2 Intersection prediction of miR-144 target genes Blue indicated miR-144 target genes predicted by miRWalk software, yellow indicated miR-144 target genes predicted by TargetScan software, and green indicated miR-144 target gene predicted by miRDB software.
Fig.5 Expression of miR-144 in bovine parts A,Expression of miR-144 in main tissues of cattle; B, Expression of miR-144 in main tissues of cattle at different developmental stages.Data marked without the same lowercase letters indicated significant differences at P<0.05.
[1] | MANSOORI B, SHOTORBANI S S, BARADARAN B. RNA interference and its role in cancer therapy[J]. Advanced Pharmaceutical Bulletin, 2014, 4(4): 313-321. |
[2] | WIGMORE P M, STICKLAND N C. Muscle development in large and small pig fetuses[J]. Journal of Anatomy, 1983, 137(Pt 2): 235-245. |
[3] |
CAO X N, TANG S Y, DU F, et al. miR-99a-5p regulates the proliferation and differentiation of skeletal muscle satellite cells by targeting MTMR3 in chicken[J]. Genes, 2020, 11(4): 369.
DOI URL |
[4] |
ELSAEID E I, DONG D, WANG X G, et al. Bta-miR-885 promotes proliferation and inhibits differentiation of myoblasts by targeting MyoD1[J]. Journal of Cellular Physiology, 2020, 235(10): 6625-6636.
DOI URL |
[5] |
WINBANKS C E, WANG B, BEYER C, et al. TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4[J]. The Journal of Biological Chemistry, 2011, 286(16): 13805-13814.
DOI URL |
[6] |
WU N Z, GU T T, LU L, et al. Roles of miRNA-1 and miRNA-133 in the proliferation and differentiation of myoblasts in duck skeletal muscle[J]. Journal of Cellular Physiology, 2019, 234(4): 3490-3499.
DOI URL |
[7] | 张伟, 王世银, 邓双义, 等. oar-miR-133的表达对巴什拜羊骨骼肌细胞增殖和分化的影响[J]. 西北农业学报, 2019, 28(3): 315-322. |
ZHANG W, WANG S Y, DENG S Y, et al. Effect of oar-miR-133 expression on proliferation and differentiation of skeletal muscle satellite cell of bashbay sheep(Ovis aries)[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(3): 315-322. (in Chinese with English abstract) | |
[8] |
TONG H L, JIANG R Y, LIU T T, et al. Bta-miR-378 promote the differentiation of bovine skeletal muscle-derived satellite cells[J]. Gene, 2018, 668: 246-251.
DOI URL |
[9] | ZHANG W R, ZHANG H N, WANG Y M, et al. miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5[J]. In Vitro Cellular & Developmental BiologyAnimal, 2017, 53(3): 265-271. |
[10] | 王伟, 滚双宝, 王鹏飞, 等. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
WANG W, GUN S B, WANG P F, et al. Tissue expression and significant target genes analysis of swine miR-204[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1564-1573. (in Chinese with English abstract) | |
[11] | ZHOU J X, TIAN Z G, ZHU L F, et al. MicroRNA-615-3p promotes the osteoarthritis progression by inhibiting chondrogenic differentiation of bone marrow mesenchymal stem cells[J]. European Review for Medical and Pharmacological Sciences, 2018, 22(19): 6212-6220. |
[12] | 陈雯, 张伟伟, 邵淑丽, 等. miR-423-5p在牛肌肉组织中表达及其靶基因预测[J]. 浙江农业学报, 2021, 33(5): 785-793. |
CHEN W, ZHANG W W, SHAO S L, et al. Expression of miR-423-5p in bovine muscle and predicted target genes[J]. Acta AgriculturaeZhejiangensis, 2021, 33(5): 785-793. (in Chinese with English abstract) | |
[13] | 樊赟, 樊纪民, 卞华. miR-144t通过对肝细胞生长因子的调控抑制肝癌细胞MHCC97H的增殖、迁移及延缓肝癌进展[J]. 中国老年学杂志, 2021, 41(10): 2161-2165. |
FAN Y, FAN J M, BIAN H. miR-144t inhibits the proliferation and migration of hepatocellular carcinoma cell MHCC97H and delays the progression of hepatocellular carcinoma by regulating hepatocyte growth factor[J]. Chinese Journal of Gerontology, 2021, 41(10): 2161-2165. (in Chinese) | |
[14] |
XU Q H, LIAO B L, HU S, et al. Circular RNA 0081146 facilitates the progression of gastric cancer by sponging miR-144 and up-regulating HMGB1[J]. Biotechnology Letters, 2021, 43(4): 767-779.
DOI URL |
[15] |
JONES N C, FEDOROV Y V, ROSENTHAL R S, et al. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion[J]. Journal of Cellular Physiology, 2001, 186(1): 104-115.
DOI URL |
[16] |
WEBER C, HAMETNER C, TUCHSCHERER A, et al. Variation in fat mobilization during early lactation differently affects feed intake, body condition, and lipid and glucose metabolism in high-yielding dairy cows[J]. Journal of Dairy Science, 2013, 96(1): 165-180.
DOI URL |
[17] |
AMOS L A, MA F Y, TESCH G H, et al. ASK 1 inhibitor treatment suppresses p38/JNK signalling with reduced kidney inflammation and fibrosis in rat crescentic glomerulonephritis[J]. Journal of Cellular and Molecular Medicine, 2018, 22(9): 4522-4533.
DOI URL |
[18] |
SACLIER M, LAPI M, BONFANTI C, et al. The transcription factor Nfix requires RhoA-ROCK1 dependent phagocytosis to mediate macrophage skewing during skeletal muscle regeneration[J]. Cells, 2020, 9(3):708.
DOI URL |
[19] |
SHIMOKAWA H, KIKUCHI N, SATOH K. Shrinking basic cardiovascular research in Japan: the tip of the iceberg[J]. Circulation Research, 2017, 121(4): 331-334.
DOI URL |
[20] |
CAI S D, CHEN J S, XI Z W, et al. microRNA 144 inhibits migration and proliferation in rectal cancer by downregulating ROCK1[J]. Molecular Medicine Reports, 2015, 12(5): 7396-7402.
DOI URL |
[21] |
SHU L L, HOUGHTON P J. The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts[J]. Molecular and Cellular Biology, 2009, 29(17): 4691-4700.
DOI URL |
[22] | ZHOU W, YE S D, WANG W. miR-217 alleviates high-glucose-induced vascular smooth muscle cell dysfunction via regulating ROCK1[J]. Journal of Biochemical and Molecular Toxicology, 2021, 35(3): e22668. |
[23] |
TAKIMOTO E. Cyclic GMP-dependent signaling in cardiac myocytes[J]. Circulation Journal:Official Journal of the Japanese Circulation Society, 2012, 76(8): 1819-1825.
DOI URL |
[24] |
HAMMOND J, BALLIGAND J L. Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling[J]. Journal of Molecular and Cellular Cardiology, 2012, 52(2): 330-340.
DOI URL |
[25] | LEITNER L M, WILSON R J, YAN Z, et al. Reactive oxygen species/nitric oxide mediated inter-organ communication in skeletal muscle wasting diseases[J]. Antioxidants & Redox Signaling, 2017, 26(13): 700-717. |
[26] | BERDEAUX R, STEWART R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration[J]. American Journal of Physiology Endocrinology and Metabolism, 2012, 303(1): E1-E17. |
[27] |
PLANCHON P, VEBER N, MAGNIEN V, et al. Alteration of prostaglandin E receptors in advanced breast tumour cell lines[J]. Molecular and Cellular Endocrinology, 1995, 111(2): 219-223.
DOI URL |
[28] | MIGUELANGEL MD, JOHANA M G, KALENIA M F, et al. Morphological changes of physeal cartilage and secondary ossification centres in the developing femur of the house mouse (Mus musculus):amicro-CT based study[J]. Anatomia HistologiaEmbryologia, 2019, 48(2): 117-124. |
[29] |
MIWA M, SAURA R, HIRATA S, et al. Induction of apoptosis in bovine articular chondrocyte by prostaglandin E(2)through cAMP-dependent pathway[J]. Osteoarthritis and Cartilage, 2000, 8(1): 17-24.
DOI URL |
[30] | RAVNSKJAER K, MADIRAJU A, MONTMINY M. Role of the cAMP pathway in glucose and lipid metabolism[J]. Handbook of Experimental Pharmacology, 2016, 233: 29-49. |
[31] |
CELIK O, CELIK N, UGUR K, et al. NppcNpr2cGMP signaling cascade maintains oocyte developmental capacity[J]. Cellular and Molecular Biology (Noisy-le-grand, France), 2019, 65(4): 83-89.
DOI URL |
[32] |
YASUDA M, KAWABATA J, AKIEDA-ASAI S, et al. Guanylyl cyclase C and guanylin reduce fat droplet accumulation in cattle mesenteric adipose tissue[J]. Journal of Veterinary Science, 2017, 18(3): 341-348.
DOI URL |
[33] |
LEE K T, BYUN M J, KANG K S, et al. Neuronal genes for subcutaneous fat thickness in human and pig are identified by local genomic sequencing and combined SNP association study[J]. PLoS One, 2011, 6(2): e16356.
DOI URL |
[34] |
LIU H, PALMER D, JIMMO S L, et al. Expression of phosphodiesterase 4D (PDE4D) is regulated by both the cyclic AMP-dependent protein kinase and mitogen-activated protein kinase signaling pathways:apotential mechanism allowing for the coordinated regulation of PDE4D activity and expression in cells[J]. Journal of Biological Chemistry, 2000, 275(34): 26615-26624.
DOI URL |
[35] |
KANAME T, KI C S, NIIKAWA N, et al. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis[J]. Cellular Signalling, 2014, 26(11): 2446-2459.
DOI URL |
[36] |
SILVA D, FONSECA L, PINHEIRO D G, et al. Prediction of hub genes associated with intramuscular fat content in Nelore cattle[J]. BMC Genomics, 2019, 20(1): 520.
DOI URL |
[1] | CHEN Wen, ZHANG Weiwei, SHAO Shuli, FU Xuepeng, HUANG Xin, LI Tie. Expression of miR-423-5p in bovine muscle and predicted target genes [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 785-793. |
[2] | FENG Shangle, LI Xuenan, CHEN Yige, LIU Ruiqi, BAI Zhiyi, LI Wenjuan. Screening and expression of cyclins gene in Hyriopsis cumingii [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2041-2050. |
[3] | WANG Wei, GUN Shuangbao, WANG Pengfei, HUANG Xiaoyu, XIE Kaihui, LUO Ruirui, GAO Xiaoli, ZHANG Bo, YAN Zunqiang, YANG Qiaoli, MA Yanping. Tissue expression and significant target genes analysis of swine miR-204 [J]. , 2020, 32(9): 1564-1573. |
[4] | SUN Ruiping, WANG Feng, CHAO Zhe, LIU Hailong, XING Manping, LIU Quanwei, HUANG Lili, ZHENG Xinli, WEI Limin. Cloning and tissue expression analysis of PDK4 gene in Tunchang pig [J]. , 2020, 32(6): 978-985. |
[5] | DONG Xinxing, LI Mingli, CUI Yijia, LAN Guoxiang, WANG Xiaoyi, YAN Dawei. Cloning, bioinformatics analysis and tissue expression detection of MCUR1 gene in Saba pig [J]. , 2019, 31(11): 1825-1833. |
[6] | WU Wei, FENG Zhijuan, XU Shengchun, LIU Na, ZHANG Guwen, HU Qizan, GONG Yaming. Genome-wide identification and expression analysis of soybean NIPs [J]. , 2018, 30(7): 1101-1109. |
[7] | WU Ne, CHEN Xuan, JIANG Yaoyao, ZHANG Tianye, YANG Jian, ZHU Tongquan, ZHANG Hengmu, CHEN Jianping. Selection of reference genes in wheat infected by Chinese wheat mosaic virus (CWMV) [J]. , 2018, 30(7): 1182-1187. |
[8] | GAO Jianfeng, LU Zengkui, MA Youji, LI Taotao1, ZHAO Xingxu. Cloning, sequence analysis and tissue expression of MUSTN1 gene in sheep (Ovis aires) [J]. , 2017, 29(10): 1661-1668. |
[9] | WANG Shujuan1, LIU Wenju1, LIU Xiaoli2, WANG Like1, PANG Xunsheng1. Study on expression of melatonin receptor Mel1a in several duck tissues [J]. , 2016, 28(6): 928-. |
[10] | ZHANG Hui\|qin, XIE Ming*, XIAO Jin\|ping, ZHOU Li\|qiu, SONG Gen\|hua. Screening of reference genes for real-time quantitative PCR in kiwifruit [J]. , 2015, 27(4): 567-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||