Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (3): 568-578.DOI: 10.3969/j.issn.1004-1524.20240197
• Animal Science • Previous Articles Next Articles
WU Xingfeng1,2(), XIAO Yingping2, LYU Wentao2, MA Lingyan2, CHEN Qu2, WEN Yang2, XU E1,*(
)
Received:
2024-02-29
Online:
2025-03-25
Published:
2025-04-02
CLC Number:
WU Xingfeng, XIAO Yingping, LYU Wentao, MA Lingyan, CHEN Qu, WEN Yang, XU E. Clostridium butyricum affects muscle fiber type in mice by modulating colonic microbial structure and short-chain fatty acids content[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 568-578.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240197
基因名Gene name | 正向引物序列Sequence of forward primer | 反向引物序列Sequence of reverse primer |
---|---|---|
MyHC I | 5'-ATATACAGCCCCTGAGACCAG-3' | 5'-GAACCTGGAGCCCCTTATCC-3' |
MyHC IIa | 5'-GAACATGGAGCAGACCGTGA-3' | 5'-GCGCATGACCAAAGGTTTCA-3' |
MyHC IIx | 5'-GAAGTTGCATCCCTAAAGGCAG-3' | 5'-CCCCTGCATTTTGCCAGAAG-3' |
MyHC IIb | 5'-TCACCTACCAGACCGAGGAG-3' | 5'-TCTCCTGTCACCTCTCAACAGA-3' |
GAPDH | 5'-TTCACCACCATGGAGAAGGC-3' | 5'-TGAAGTCGCAGGAGACAACC-3' |
Table 1 Primers sequences used for real-time fluorescent quantitative PCR
基因名Gene name | 正向引物序列Sequence of forward primer | 反向引物序列Sequence of reverse primer |
---|---|---|
MyHC I | 5'-ATATACAGCCCCTGAGACCAG-3' | 5'-GAACCTGGAGCCCCTTATCC-3' |
MyHC IIa | 5'-GAACATGGAGCAGACCGTGA-3' | 5'-GCGCATGACCAAAGGTTTCA-3' |
MyHC IIx | 5'-GAAGTTGCATCCCTAAAGGCAG-3' | 5'-CCCCTGCATTTTGCCAGAAG-3' |
MyHC IIb | 5'-TCACCTACCAGACCGAGGAG-3' | 5'-TCTCCTGTCACCTCTCAACAGA-3' |
GAPDH | 5'-TTCACCACCATGGAGAAGGC-3' | 5'-TGAAGTCGCAGGAGACAACC-3' |
处理 Treatment | 初始体重 Initial body weight/g | 结束体重 Final body weight/g | 腓肠肌质量 Gastrocnemius muscle weight/g | 腓肠肌质量分数 Mass fraction of gastrocnemius muscle/% |
---|---|---|---|---|
NC | 22.01 | 25.25 | 0.36 | 1.42 |
CB | 21.94 | 24.99 | 0.37 | 1.49 |
Table 2 Body weight and gastrocnemius muscle weight of mice
处理 Treatment | 初始体重 Initial body weight/g | 结束体重 Final body weight/g | 腓肠肌质量 Gastrocnemius muscle weight/g | 腓肠肌质量分数 Mass fraction of gastrocnemius muscle/% |
---|---|---|---|---|
NC | 22.01 | 25.25 | 0.36 | 1.42 |
CB | 21.94 | 24.99 | 0.37 | 1.49 |
Fig.1 HE staining sections (A), fiber diameter (B) and cross-sectional area (c) of gastrocnemius muscle in mice “*” indicates significant difference at P<0.05. The same as below.
处理 Treatment | ASV数量 ASV number | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index |
---|---|---|---|---|
NC | 430±20 | 4.29±0.11 | 0.04±0.01 | 431.0±19.7 |
CB | 432±23 | 4.47±0.05 | 0.03±0.01 | 433.3±22.2 |
Table 3 Alpha diversity of intestinal microflora
处理 Treatment | ASV数量 ASV number | 香农指数 Shannon index | 辛普森指数 Simpson index | Chao1指数 Chao1 index |
---|---|---|---|---|
NC | 430±20 | 4.29±0.11 | 0.04±0.01 | 431.0±19.7 |
CB | 432±23 | 4.47±0.05 | 0.03±0.01 | 433.3±22.2 |
Fig.4 Linear discriminant analysis effect size (LEfSe) analysis (A), functional prediction (B) and network interaction analysis (C) of mouse intestinal microflora The size of the nodes in the figure is positively correlated with the proportion of intestinal microflora abundance. The more the connection lines between the microflora, the closer the relationship between the microflora.
处理 Treatment | 乙酸含量 Acetic acid content | 丙酸含量 Propionic acid content | 异丁酸含量 Isobutyric acid content | 丁酸含量 Butyric acid content | 异戊酸含量 Isovaleric acid content | 戊酸含量 Valeric acid content | 总短链脂肪酸含量 Total short chain fatty acids content |
---|---|---|---|---|---|---|---|
NC | 2.23±0.32 | 0.41±0.17 | 0.08±0.07 | 0.62±0.11 | 0.05±0.01 | 0.07±0.01 | 3.47±0.49 |
CB | 3.35±0.35* | 0.56±0.24 | 0.46±0.19 | 1.15±0.14* | 0.11±0.03* | 0.14±0.03* | 5.77±0.60* |
Table 4 Short chain fatty acids content in colon of mice mg·g-1
处理 Treatment | 乙酸含量 Acetic acid content | 丙酸含量 Propionic acid content | 异丁酸含量 Isobutyric acid content | 丁酸含量 Butyric acid content | 异戊酸含量 Isovaleric acid content | 戊酸含量 Valeric acid content | 总短链脂肪酸含量 Total short chain fatty acids content |
---|---|---|---|---|---|---|---|
NC | 2.23±0.32 | 0.41±0.17 | 0.08±0.07 | 0.62±0.11 | 0.05±0.01 | 0.07±0.01 | 3.47±0.49 |
CB | 3.35±0.35* | 0.56±0.24 | 0.46±0.19 | 1.15±0.14* | 0.11±0.03* | 0.14±0.03* | 5.77±0.60* |
Fig.5 Correlation analysis within intestinal differential microflora, SCFA content and muscle fiber types of mice “*” and “**”indicate significant correlation at P<0.05 and P<0.01 level, respectively.
[1] | KIM G D, YANG H S, JEONG J Y. Intramuscular variations of proteome and muscle fiber type distribution in semimembranosus and semitendinosus muscles associated with pork quality[J]. Food Chemistry, 2018, 244: 143-152. |
[2] | WANG L N, WANG Z, YANG K L, et al. Epigallocatechin gallate reduces slow-twitch muscle fiber formation and mitochondrial biosynthesis in C2C12 cells by repressing AMPK activity and PGC-1α expression[J]. Journal of Agricultural and Food Chemistry, 2016, 64(34): 6517-6523. |
[3] | YAN E F, WANG Y B, HE L J, et al. Effects of dietary L-malic acid supplementation on meat quality, antioxidant capacity and muscle fiber characteristics of finishing pigs[J]. Foods, 2022, 11(21): 3335. |
[4] | ZHOU X H, LIU Y H, ZHANG L Y, et al. Serine-to-glycine ratios in low-protein diets regulate intramuscular fat by affecting lipid metabolism and myofiber type transition in the skeletal muscle of growing-finishing pigs[J]. Animal Nutrition, 2021, 7(2): 384-392. |
[5] | 孙燕勇, 付绍印, 祁云霞, 等. 绵羊骨骼肌生长发育调控基因研究进展[J]. 中国畜牧兽医, 2019, 46(5): 1429-1438. |
SUN Y Y, FU S Y, QI Y X, et al. Research advances on regulation genes of growth and development of skeletal muscle in sheep[J]. China Animal Husbandry & Veterinary Medicine, 2019, 46(5): 1429-1438. (in Chinese with English abstract) | |
[6] | LAHIRI S, KIM H, GARCIA-PEREZ I, et al. The gut microbiota influences skeletal muscle mass and function in mice[J]. Science Translational Medicine, 2019, 11(502): eaan5662. |
[7] | RESZKA P, CYGAN-SZCZEGIELNIAK D, JANKOWIAK H, et al. Effects of effective microorganisms on meat quality, microstructure of the Longissimus lumborum muscle, and electrophoretic protein separation in pigs fed on different diets[J]. Animals, 2020, 10(10): 1755. |
[8] | LIU T, BAI Y P, WANG C L, et al. Effects of probiotics supplementation on the intestinal metabolites, muscle fiber properties, and meat quality of sunit lamb[J]. Animals, 2023, 13(4): 762. |
[9] | 白艳苹. 乳酸菌对苏尼特羊线粒体生物发生、肌纤维特性及肉品质的影响[D]. 呼和浩特: 内蒙古农业大学, 2021. |
BAI Y P. Effects of lactic acid bacteria on mitochondrial biogenesis, muscle fiber characteristics and meat quality of Sunit sheep[D]. Hohhot: Inner Mongolia Agricultural University, 2021. (in Chinese with English abstract) | |
[10] | HAN Q, HUANG X G, YAN F Y, et al. The role of gut microbiota in the skeletal muscle development and fat deposition in pigs[J]. Antibiotics, 2022, 11(6): 793. |
[11] | HENAGAN T M, STEFANSKA B, FANG Z D, et al. Sodium butyrate epigenetically modulates high-fat diet-induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning[J]. British Journal of Pharmacology, 2015, 172(11): 2782-2798. |
[12] | WELLMANN K B, BAGGERMAN J O, BURSON W C, et al. Effects of zinc propionate supplementation on growth performance, skeletal muscle fiber, and receptor characteristics in beef steers[J]. Journal of Animal Science, 2020, 98(7): skaa210. |
[13] | CHANG S, CHEN X L, HUANG Z Q, et al. Dietary sodium butyrate supplementation promotes oxidative fiber formation in mice[J]. Animal Biotechnology, 2018, 29(3): 212-215. |
[14] | MA L Y, LYU W T, SONG Y Y, et al. Anti-inflammatory effect of Clostridium butyricum-derived extracellular vesicles in ulcerative colitis: impact on host microRNAs expressions and gut microbiome profiles[J]. Molecular Nutrition & Food Research, 2023, 67(13): e2200884. |
[15] | MA L Y, SHEN Q C, LYU W T, et al. Clostridium butyricum and its derived extracellular vesicles modulate gut homeostasis and ameliorate acute experimental colitis[J]. Microbiology Spectrum, 2022, 10(4): e0136822. |
[16] | ZHANG L, CAO G T, ZENG X F, et al. Effects of Clostridium butyricum on growth performance, immune function, and cecal microflora in broiler chickens challenged with Escherichia coli K88[J]. Poultry Science, 2014, 93(1): 46-53. |
[17] | 吴杨, 黄倩倩, 虞为, 等. 饲料中添加丁酸梭菌对卵形鲳鲹幼鱼生长性能、血清生化指标及肠道菌群和短链脂肪酸含量的影响[J]. 动物营养学报, 2023, 35(9): 5904-5918. |
WU Y, HUANG Q Q, YU W, et al. Effects of dietary supplementation of Clostridium butyricum on growth performance, serum biochemical indexes and intestinal flora and short-chain fatty acid contents of juvenile Trachinotus ovatus[J]. Chinese Journal of Animal Nutrition, 2023, 35(9): 5904-5918. (in Chinese with English abstract) | |
[18] | DOU L, LIU C, CHEN X Y, et al. Supplemental Clostridium butyricum modulates skeletal muscle development and meat quality by shaping the gut microbiota of lambs[J]. Meat Science, 2023, 204: 109235. |
[19] | MA L Y, NI L Y, YANG T Q, et al. Preventive and therapeutic spermidine treatment attenuates acute colitis in mice[J]. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1864-1876. |
[20] | MA L Y, TAO S Y, SONG T X, et al. Clostridium butyricum and carbohydrate active enzymes contribute to the reduced fat deposition in pigs[J]. iMeta, 2024, 3(1): e160. |
[21] | XIAO Y P, LI K F, XIANG Y, et al. The fecal microbiota composition of boar Duroc, Yorkshire, Landrace and Hampshire pigs[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(10): 1456-1463. |
[22] | LEE K, KIM J, PARK S D, et al. Lactobacillus plantarum HY7715 ameliorates sarcopenia by improving skeletal muscle mass and function in aged balb/c mice[J]. International Journal of Molecular Sciences, 2021, 22(18): 10023. |
[23] | CHENG Y F, CHEN Y P, LI X H, et al. Effects of synbiotic supplementation on growth performance, carcass characteristics, meat quality and muscular antioxidant capacity and mineral contents in broilers[J]. Journal of the Science of Food and Agriculture, 2017, 97(11): 3699-3705. |
[24] | VALDES A M, WALTER J, SEGAL E, et al. Role of the gut microbiota in nutrition and health[J]. BMJ, 2018, 361: k2179. |
[25] | LIU Z Z, JIANG Z Y, ZHANG Z T, et al. Bacillus coagulans in combination with chitooligosaccharides regulates gut microbiota and ameliorates the DSS-induced colitis in mice[J]. Microbiology Spectrum, 2022, 10(4): e0064122. |
[26] | ZHANG Y, MA C, ZHAO J, et al. Lactobacillus casei Zhang and vitamin K2 prevent intestinal tumorigenesis in mice via adiponectin-elevated different signaling pathways[J]. Oncotarget, 2017, 8(15): 24719-24727. |
[27] | ZHANG X Y, PAN Z, WANG Y X, et al. Taraxacum officinale-derived exosome-like nanovesicles modulate gut metabolites to prevent intermittent hypoxia-induced hypertension[J]. Biomedicine & Pharmacotherapy, 2023, 161: 114572. |
[28] | LOUIS P, YOUNG P, HOLTROP G, et al. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene[J]. Environmental Microbiology, 2010, 12(2): 304-314. |
[29] | LOUIS P, FLINT H J. Formation of propionate and butyrate by the human colonic microbiota[J]. Environmental Microbiology, 2017, 19(1): 29-41. |
[30] | LOUIS P, DUNCAN S H, MCCRAE S I, et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon[J]. Journal of Bacteriology, 2004, 186(7): 2099-2106. |
[31] | LI H F, JIA Y X, WENG D, et al. Clostridium butyricum inhibits fat deposition via increasing the frequency of adipose tissue-resident regulatory T cells[J]. Molecular Nutrition & Food Research, 2022, 66(12): e2100884. |
[32] | 戴颖. 乳酸菌干预对大鼠营养物质代谢及消化吸收的影响[D]. 扬州: 扬州大学, 2017. |
DAI Y. Effects of lactic acid bacteria intervention on nutrient metabolism and digestion and absorption in rats[D]. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract) | |
[33] | 胡晓冰, 林标声, 王振伟, 等. 1株利用乳酸的猪源丁酸梭菌的分离鉴定及基因组序列分析[J]. 中国畜牧兽医, 2022, 49(2): 569-578. |
HU X B, LIN B S, WANG Z W, et al. Isolation, identification and genomic sequence analysis of a strain of Clostridium butyricum from pigs utilizing lactic acid[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(2): 569-578. (in Chinese with English abstract) | |
[34] | PICCA A, PONZIANI F R, CALVANI R, et al. Gut microbial, inflammatory and metabolic signatures in older people with physical frailty and sarcopenia: results from the BIOSPHERE study[J]. Nutrients, 2019, 12(1): 65. |
[35] | BINDELS L B, BECK R, SCHAKMAN O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One, 2012, 7(6): e37971. |
[36] | NICHOLSON J K, HOLMES E, KINROSS J, et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336(6086): 1262-1267. |
[37] | YAMAMOTO K, ISHIZU Y, HONDA T, et al. Patients with low muscle mass have characteristic microbiome with low potential for amino acid synthesis in chronic liver disease[J]. Scientific Reports, 2022, 12(1): 3674. |
[1] | LYU Guoying, WANG Mengyu, ZHANG Zuofa. Impact of Hericium erinaceus polysaccharide on intestinal flora in mice [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2794-2802. |
[2] | WU Xingfeng, ZHANG Xiaojun, ZHU Jiang, YU Minjie, XU E, MA Lingyan, XIAO Yingping. Study on structural characteristics of intestinal microflora and expression changes of intestinal inflammatory factors, adenylate and guanylate cyclase mRNA in diarrheal piglets [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2465-2475. |
[3] | LIN Yuqing, LU Shengmin, ZHOU Wanyi, XING Jianrong, YANG Ying. Preliminary investigation about structure and probiotic properties of polysaccharides from Dendrobium officinale leaves [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2504-2511. |
[4] | LIU Hong\|lu, FAN Lei, DAI Xi\|xi, ZHANG Fei\|yan, PAN Kang\|cheng*. Effects of Saccharomyces cerevisiae selenium and Clostridium butyricum additive on growth, antioxidant ability and intestinal microflora#br# [J]. , 2015, 27(9): 1529-. |
[5] | FENG Shang-lian;SHANG Jian-gang;SUN Yue-ying;ZHU Jian-jin;LU Jin-hui;GUO Hong-bin. Effect of lactic acid on intestinal E.coli and lactobacillus of piglets [J]. , 2011, 23(3): 0-510. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||