Acta Agriculturae Zhejiangensis ›› 2020, Vol. 32 ›› Issue (12): 2303-2312.DOI: 10.3969/j.issn.1004-1524.2020.12.22
• Review • Previous Articles
GENG Yanfei1(), LYU Mingfang2,*(
)
Received:
2020-04-03
Online:
2020-12-25
Published:
2020-12-25
Contact:
LYU Mingfang
CLC Number:
GENG Yanfei, LYU Mingfang. Progress on cysteine-rich receptor-like kinase family in plants[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2303-2312.
植物 Plant | CRK数量/个 CRK number | 参考文献 References |
---|---|---|
拟南芥Arabidopsis thaliana | 44 | [1] |
海岛棉Gossypium barbadense | 63 | [6] |
水稻Oryza sativa | 49 | [7] |
二穗短柄草Brachypodium distachyon | 43 | [7] |
大麦Hordeum vulgare | 37 | [7] |
高粱Sorghum bicolor | 38 | [7] |
小麦Triticum aestivum | 170 | [7] |
红花菜豆Phaseolus coccineus | 46 | [9] |
大豆Glycine max | 91 | [8] |
蒺藜苜蓿Medicago truncatula | 53 | [8] |
夏枯草Phaseolus vulgaris | 54 | [8] |
玉米Zea mays | 38 | [8] |
Table 1 Number of CRK genes in different plants
植物 Plant | CRK数量/个 CRK number | 参考文献 References |
---|---|---|
拟南芥Arabidopsis thaliana | 44 | [1] |
海岛棉Gossypium barbadense | 63 | [6] |
水稻Oryza sativa | 49 | [7] |
二穗短柄草Brachypodium distachyon | 43 | [7] |
大麦Hordeum vulgare | 37 | [7] |
高粱Sorghum bicolor | 38 | [7] |
小麦Triticum aestivum | 170 | [7] |
红花菜豆Phaseolus coccineus | 46 | [9] |
大豆Glycine max | 91 | [8] |
蒺藜苜蓿Medicago truncatula | 53 | [8] |
夏枯草Phaseolus vulgaris | 54 | [8] |
玉米Zea mays | 38 | [8] |
Fig.2 Phylogenetic tree and distribution on chromosomes of rice CRKs A, The phylogenetic tree of OsCRKs;B, OsCRKs distribution on chromosomes of rice.
物种 Species | 基因名称 Gene name | 基因号 Gene ID | 调控途径 Regulatory pathways | 参考文献 References |
---|---|---|---|---|
拟南芥 | CRK2 | At1g70520 | 花期、矮化、衰老、ABA应答 | [11] |
Arabidopsis thaliana | Flowering time, dwarf, senescence and ABA response | |||
CRK4 | At3g45860 | 花期、衰老、免疫应答 | [11,17,27] | |
Flowering time, senescence, immune response | ||||
CRK5 | At4g23130 | 发芽、矮化、衰老、免疫应答 | [11, 12] | |
Germination, dwarf, senescence, immune response | ||||
CRK6 | At4g23140 | 衰老、免疫应答 | [11,17,27] | |
Senescence, immune response | ||||
CRK7 | At4g23150 | 花期、ROS 信号途径 | [18] | |
Flowering time, ROS signaling pathway | ||||
CRK13 | At4g23210 | 衰老、免疫应答 | [30] | |
Senescence, immune response | ||||
CRK19 | At4g23270 | 花期、SA应答、免疫应答 | [11, 17] | |
Flowering time, SA and immune response | ||||
CRK20 | At4g23280 | 衰老、SA应答、免疫应答 | [11,17,32] | |
Senescence, SA and immune response | ||||
CRK28 | At4g21400 | 根毛、表皮毛、衰老、免疫应答 | [11,20,22] | |
root architecture, trichome, senescence, immune response | ||||
CRK29 | At4g21410 | 发芽、根长、衰老 | [11, 22] | |
Germination, root length, senescence | ||||
CRK36 | At4g04490 | ABA 应答、免疫应答 | [24,29,34] | |
ABA and immune response | ||||
CRK37 | At4g04500 | 发芽、衰老、ABA应答 | [11, 24] | |
Germination, senescence, ABA response | ||||
CRK38 | At4g04510 | 发芽、花期、衰老 | [11] | |
Germination, flowering time and senescence | ||||
CRK42 | At5g40380 | 根长、衰老 | [11] | |
Root length, senescence | ||||
CRK45 | At4g11890 | 抽薹、衰老、干旱、ABA及免疫应答 | [11,23,31] | |
Bolting, senescence, drought, ABA and immune response | ||||
水稻 | Os07g0488400 | LOC_Os07g30510 | 免疫反应 | [36] |
Oryza sativa | Immune response | |||
CRK6 | LOC_Os07g35690 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
CRK10 | LOC_Os07g35700 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
海岛棉 | GbCRK18 | GOBAR_DD09713 | 抗黄萎病 | [6] |
Gossypium barbadense | Enhance resistance to Verticillium wilt | |||
蒺藜苜蓿 | SymCRK | XM_003601311 | 免疫应答 | [14] |
Medicago truncatula | Immunity response | |||
大麦 | HvCRK1 | CBX51235 | 调控白粉病 | [38] |
Hordeum vulgare | Enhanced resistance to powdery mildew | |||
小麦Triticum aestivum | TaCRK1 | KC818618 | ABA应答 | [10] |
ABA response | ||||
TaRLK-R1 | DQ270234 | 抗小麦条锈病 | [39] | |
Resistance to stripe rust fungus infection | ||||
TaCRK68-A | MK188517 | 高温、干旱、寒冷、盐胁迫 | [7] | |
Heat, drought, cold and salinity stress | ||||
番茄 | SlCRK1 | KC736926 | 花药中特异表达、不受胁迫诱导 | [40] |
Solanum lycopersicum | Specific expression in the flower, Not induced by stress treatment | |||
黄瓜Cucumis sativus | Csa1M064780 | XM_031889561 | 抗白粉病 | [41] |
Resistance to powdery mildew | ||||
Csa1M064790 | XM_031882195 | 抗白粉病 | [41] | |
Resistance to powdery mildew |
Table 2 Cysteine receptor-like kinase function has been reported in plants
物种 Species | 基因名称 Gene name | 基因号 Gene ID | 调控途径 Regulatory pathways | 参考文献 References |
---|---|---|---|---|
拟南芥 | CRK2 | At1g70520 | 花期、矮化、衰老、ABA应答 | [11] |
Arabidopsis thaliana | Flowering time, dwarf, senescence and ABA response | |||
CRK4 | At3g45860 | 花期、衰老、免疫应答 | [11,17,27] | |
Flowering time, senescence, immune response | ||||
CRK5 | At4g23130 | 发芽、矮化、衰老、免疫应答 | [11, 12] | |
Germination, dwarf, senescence, immune response | ||||
CRK6 | At4g23140 | 衰老、免疫应答 | [11,17,27] | |
Senescence, immune response | ||||
CRK7 | At4g23150 | 花期、ROS 信号途径 | [18] | |
Flowering time, ROS signaling pathway | ||||
CRK13 | At4g23210 | 衰老、免疫应答 | [30] | |
Senescence, immune response | ||||
CRK19 | At4g23270 | 花期、SA应答、免疫应答 | [11, 17] | |
Flowering time, SA and immune response | ||||
CRK20 | At4g23280 | 衰老、SA应答、免疫应答 | [11,17,32] | |
Senescence, SA and immune response | ||||
CRK28 | At4g21400 | 根毛、表皮毛、衰老、免疫应答 | [11,20,22] | |
root architecture, trichome, senescence, immune response | ||||
CRK29 | At4g21410 | 发芽、根长、衰老 | [11, 22] | |
Germination, root length, senescence | ||||
CRK36 | At4g04490 | ABA 应答、免疫应答 | [24,29,34] | |
ABA and immune response | ||||
CRK37 | At4g04500 | 发芽、衰老、ABA应答 | [11, 24] | |
Germination, senescence, ABA response | ||||
CRK38 | At4g04510 | 发芽、花期、衰老 | [11] | |
Germination, flowering time and senescence | ||||
CRK42 | At5g40380 | 根长、衰老 | [11] | |
Root length, senescence | ||||
CRK45 | At4g11890 | 抽薹、衰老、干旱、ABA及免疫应答 | [11,23,31] | |
Bolting, senescence, drought, ABA and immune response | ||||
水稻 | Os07g0488400 | LOC_Os07g30510 | 免疫反应 | [36] |
Oryza sativa | Immune response | |||
CRK6 | LOC_Os07g35690 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
CRK10 | LOC_Os07g35700 | 抗白叶枯 | [37] | |
Resistance to Xoo(Xanthomonas oryzae pv. oryzae) | ||||
海岛棉 | GbCRK18 | GOBAR_DD09713 | 抗黄萎病 | [6] |
Gossypium barbadense | Enhance resistance to Verticillium wilt | |||
蒺藜苜蓿 | SymCRK | XM_003601311 | 免疫应答 | [14] |
Medicago truncatula | Immunity response | |||
大麦 | HvCRK1 | CBX51235 | 调控白粉病 | [38] |
Hordeum vulgare | Enhanced resistance to powdery mildew | |||
小麦Triticum aestivum | TaCRK1 | KC818618 | ABA应答 | [10] |
ABA response | ||||
TaRLK-R1 | DQ270234 | 抗小麦条锈病 | [39] | |
Resistance to stripe rust fungus infection | ||||
TaCRK68-A | MK188517 | 高温、干旱、寒冷、盐胁迫 | [7] | |
Heat, drought, cold and salinity stress | ||||
番茄 | SlCRK1 | KC736926 | 花药中特异表达、不受胁迫诱导 | [40] |
Solanum lycopersicum | Specific expression in the flower, Not induced by stress treatment | |||
黄瓜Cucumis sativus | Csa1M064780 | XM_031889561 | 抗白粉病 | [41] |
Resistance to powdery mildew | ||||
Csa1M064790 | XM_031882195 | 抗白粉病 | [41] | |
Resistance to powdery mildew |
[1] | WRZACZEK M, BROSCHÉ M, SALOJÄRVI J, et al. Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis[J]. BMC Plant Biology, 2010,10(1):1-19. |
[2] | SHIU S H, BLEECKER A B. Plant receptor-like kinase gene family: diversity, function, and signaling[J]. Science’s STKE, 2001, 2001(113): re22. |
[3] |
WALKER J C, ZHANG R. Relationship of a putative receptor protein kinase from maize to the S-locus glycoproteins of Brassica[J]. Nature, 1990,345(6277):743-746.
DOI URL PMID |
[4] |
SHIU S H, BLEECKER A B. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis[J]. Plant Physiology, 2003,132(2):530-543.
URL PMID |
[5] | VAATTOVAARA A, BRANDT B, RAJARAMAN S, et al. Mechanistic insights into the evolution of DUF26-containing proteins in land plants[J]. Communications Biology, 2019,2(1):56-74. |
[6] |
LI T G, ZHANG D D, ZHOU L, et al. Genome-wide identification and functional analyses of the CRK gene family in cotton reveals GbCRK18 confers Verticillium wilt resistance in Gossypium barbadense[J]. Frontiers in Plant Science, 2018,9:1266-1282.
DOI URL PMID |
[7] |
SHARMA A, TYAGI S, SINGH K, et al. Genomic dissection and transcriptional profiling of cysteine-rich receptor-like kinases in five cereals and functional characterization of TaCRK68-A[J]. International Journal of Biological Macromolecules, 2019,134:316-329.
DOI URL PMID |
[8] |
DELGADO-CERRONE L, ALVAREZ A, MENA E, et al. Genome wide analysis of the soybean CRK-family and transcriptional regulation by biotic stress signals triggering plant immunity[J]. PLoS One, 2018,13(11):e0207438.
DOI URL PMID |
[9] | QUEZADA E, GARCIA G, ARTHIKALA M, et al. Cysteine-rich receptor-like kinase gene family identification in the Phaseolus genome and comparative analysis of their expression profiles specific to mycorrhizal and rhizobial symbiosis[J]. Genes, 2019,10(1):59. |
[10] | YANG K, RONG W, QI L, et al. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis[J]. Scientific Reports, 2013,3(1):3021. |
[11] |
BOURDAIS G, BURDIAK P, GAUTHIER A, et al. Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress[J]. PLos Genetics, 2015,11:e1005373.
URL PMID |
[12] |
CHEN K G, DU L Q, CHEN Z X. Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis[J]. Plant Molecular Biology, 2003,53(1/2):61-74.
DOI URL |
[13] |
DYKEMA P E, SIPES P R, MARIE A, et al. A new class of proteins capable of binding transition metals[J]. Plant Molecular Biology, 1999,41(1):139-150.
DOI URL PMID |
[14] | BERRABAH F, BOURCY M, ESCHSTRUTH A, et al. A nonRD receptor-like kinase prevents nodule early senescence and defense-like reactions during symbiosis[J]. New Phytologist, 2014,203(4):1305-1314. |
[15] |
NEMOTO K, TAKEMORI N, SEKI M, et al. Members of the plant CRK superfamily are capable of trans-and autophosphorylation of tyrosine residues[J]. The Journal of Biological Chemistry, 2015,290(27):16665-16677.
DOI URL PMID |
[16] |
ADAMS J A. Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model?[J]. Biochemistry, 2003,42(3):601-607.
DOI URL PMID |
[17] |
CHEN K G, FAN B F, DU L Q, et al. Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis[J]. Plant Molecular Biology, 2004,56(2):271-283.
DOI URL PMID |
[18] |
IDÄNHEIMO N, GAUTHIER A, SALOJÄRVI J, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinases CRK6 and CRK7 protect against apoplastic oxidative stress[J]. Biochemical and Biophysical Research Communications, 2014,445(2):457-462.
DOI URL |
[19] |
FERRO M, BRUGIÈRE S, SALVI D, et al. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins[J]. Molecular & Cellular Proteomics, 2010,9(6):1063-1084.
DOI URL PMID |
[20] |
PELAGIO-FLORES R, MUÑOZ-PARRA E, BARRERA-ORTIZ S, et al. The cysteine-rich receptor-like protein kinase CRK28 modulates Arabidopsis growth and development and influences abscisic acid responses[J]. Planta, 2019,251(1):1-12.
DOI URL PMID |
[21] |
LU K, LIANG S, WU Z, et al. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance[J]. Journal of Experimental Botany, 2016,67(17):5009-5027.
DOI URL PMID |
[22] |
YADETA K A, ELMORE J M, CREER A Y, et al. A cysteine-rich protein kinase associates with a membrane immune complex and the cysteine residues are required for cell death[J]. Plant Physiology, 2017,173(1):771-787.
URL PMID |
[23] |
ZHANG X J, YANG G Y, SHI R, et al. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses[J]. Plant Physiology and Biochemistry, 2013,67:189-198.
DOI URL PMID |
[24] |
BURDIAK P, RUSACZONEK A, WITOŃ D, et al. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana [J]. Journal of Experimental Botany, 2015,66(11):3325-3337.
DOI URL PMID |
[25] |
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006,124(4):803-814.
DOI URL PMID |
[26] |
KIMURA S, WASZCZAK C, HUNTER K, et al. Bound by fate: the role of reactive oxygen species in receptor-like kinase signaling[J]. The Plant Cell, 2017,29(4):638-654.
DOI URL PMID |
[27] |
YEH Y H, CHANG Y H, HUANG P Y, et al. Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases[J]. Frontiers in Plant Science, 2015,6:322.
DOI URL PMID |
[28] |
ZHOU Q, ZHANG Z F, LIU T T, et al. Identification and map-based cloning of the light-induced lesion mimic mutant 1 (LIL1) gene in rice[J]. Frontiers in Plant Science, 2017,8:2122.
DOI URL PMID |
[29] |
LEE D S, KIM Y C, KWON S J, et al. The Arabidopsis cysteine-rich receptor-like kinase CRK36 regulates immunity through interaction with the cytoplasmic kinase BIK1[J]. Frontiers in Plant Science, 2017,8:1856.
DOI URL PMID |
[30] |
ACHARYA B R, RAINA S, MAQBOOL S B, et al. Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae[J]. The Plant Journal, 2007,50(3):488-499.
DOI URL PMID |
[31] |
ZHANG X J, HAN X M, SHI R, et al. Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae[J]. Plant Physiology and Biochemistry, 2013,73:383-391.
URL PMID |
[32] |
EDERLI L, MADEO L, CALDERINI O, et al. The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection[J]. Journal of Plant Physiology, 2011,168(15):1784-1794.
URL PMID |
[33] |
NAKASHIMA K, YAMAGUCHI-SHINOZAKI K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports, 2013,32(7):959-970.
URL PMID |
[34] |
TANAKA H, OSAKABE Y, KATSURA S, et al. Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis[J]. The Plant Journal, 2012,70(4):599-613.
URL PMID |
[35] | CHEN D H, WU J, ZHAO M, et al. A novel wheat cysteine-rich receptor-like kinase gene CRK41 is involved in the regulation of seed germination under osmotic stress in Arabidopsis thaliana[J]. Journal of Plant Biology, 2017,60(6):571-581. |
[36] |
DU D, LIU M, XING Y, et al. Semi-dominant mutation in the cysteine-rich receptor-like kinase gene, ALS1, conducts constitutive defence response in rice[J]. Plant Biology, 2019,21(1):25-34.
DOI URL PMID |
[37] |
CHERN M, XU Q F, BART R S, et al. A genetic screen identifies a requirement for cysteine-rich-receptor-like kinases in rice NH1 (OsNPR1)-mediated immunity[J]. PLoS Genetics, 2016,12(5):e1006049.
DOI URL PMID |
[38] |
RAYAPURAM C, JENSEN M K, MAISER F, et al. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley[J]. Molecular Plant Pathology, 2012,13(2):135-147.
URL PMID |
[39] |
ZHOU H B, LI S F, DENG Z Y, et al. Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection[J]. The Plant Journal, 2007,52(3):420-434.
URL PMID |
[40] | KIM W B, YI S Y, OH S K, et al. Identification of a pollen-specific gene, SlCRK1 (RFK2) in tomato[J]. Genes & Genomics, 2014,36(3):303-311. |
[41] |
XU X W, YU T, XU R X, et al. Fine mapping of a dominantly inherited powdery mildew resistance major-effect QTL, Pm1.1, in cucumber identifies a 41.1 kb region containing two tandemly arrayed cysteine-rich receptor-like protein kinase genes[J]. Theoretical and Applied Genetics, 2016,129(3):507-516.
URL PMID |
[1] | LU Anqiao, ZHANG Fengju, WANG Xueqin, XU Xing. Effects of NaCl and Na2SO4 stress on content and distribution of K + and Na + of Echinochloa frumentacea seedlings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 396-403. |
[2] | GOU Bingdiao, DUAN Panpan, YANG Nan, ZHAO Shufang, WANG Yongfu, ZHANG Gaoyuan, WEI Bingqiang. Heterosis analysis of photosynthetic parameters of pepper seedling responding to low temperature and low light stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 429-436. |
[3] | CHENG Jing, LIU Jiming, WANG Shu, WANG Deng, LI Lixia, XU Guorui, CHEN Meng, HUANG Luting. Plasticity of a karst endemic plant Juglans regia L. f. luodianense Liu et Xu in response to soil moisture [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 259-269. |
[4] | WANG Zhihui, PENG Hua, YANG Puxiang, JIANG Xinfeng, LI Wenjin, YUE Cuinan, LI Chen, LI Yansheng. Phenotypic variation and resource value evaluation of natural hybrid progenies of seventeen Huangjinju tea plants [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 298-307. |
[5] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of different planting patterns on soil nematode community structure and soil properties of Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 316-325. |
[6] | HE Jiaqi, ZHAI Ying, ZHANG Jun, QIU Shuang, LI Mingyang, ZHAO Yan, ZHANG Meijuan, MA Tianyi. Cloning and expression analysis of GmDof1.5 in soybean under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 1-7. |
[7] | SU Xuesi, ZHANG Yubao, WANG Ruoyu, WANG Yajun, TANG Guoliang, JIN Weijie. Prokaryotic expression of Plantago asiatica mosaic virus capsid protein and preparation of its polyclonal antibody [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 104-111. |
[8] | SONG Xindan, CHEN Binbin, MA Zengling, XU Lili, LIN Lidong, WU Mingjiang. Effects of salinity level on photosynthetic characteristics of Sargassum fusiforme seedlings [J]. , 2020, 32(9): 1634-1644. |
[9] | ZHENG Xusong, ZHONG Liequan, WANG Huifu, CHEN Fangjing, CHENG Liping, XU Qiqiang, LI Yang, ZHONG Xuhua, LYU Zhongxian. Demonstration on rice pests control by fertilizer regulation technique in different geographic rice growing areas of Zhejiang Province [J]. , 2020, 32(9): 1656-1664. |
[10] | CHEN Tian, BAO Ningying, DU Chongxuan, LIU Yungen. Growth and arsenic enrichment characteristics of Typha angustifolia L. under different arsenic pollution levels [J]. , 2020, 32(9): 1672-1682. |
[11] | XU Na, WANG Dahai, DU Chuanyin, DU Shasha, WANG Xiaomeng, ZHANG Yan, ZHANG Yuqin, WU Yuanhua, GUAN Ensen, SHI Yi. Effects of planting space on growth and development of tobacco seedlings [J]. , 2020, 32(8): 1342-1350. |
[12] | YUE Jianhua, DONG Yan, LI Wenyang, LI Meng, ZHANG Yan. Effects of pH on physiological characters in somatic embryo induction stage of Agapanthus praecox [J]. , 2020, 32(8): 1405-1414. |
[13] | SHI Jing, LIU Dongyang, ZHANG Fenghua. Physiological response and salt tolerance mechanism of cotton seedlings to salt stress [J]. , 2020, 32(7): 1141-1148. |
[14] | NIU Suzhen, ZHAO Zhifei, SONG Qinfei, CHEN Zhengwu. Eco-environmental diversity of wild tea germplasms in Guizhou Province [J]. , 2020, 32(7): 1223-1232. |
[15] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2314
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1689
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||