Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (8): 1505-1518.DOI: 10.3969/j.issn.1004-1524.2021.08.18
• Biosystems Engineering • Previous Articles Next Articles
WU Ningshan1,2(), WANG Jiaxi1,2, ZHANG Yan1,2,*(
), YUAN Mutian1,2, ZHANG Qi1,2, GAO Chiyu1,2
Received:
2021-01-14
Online:
2021-08-25
Published:
2021-08-27
Contact:
ZHANG Yan
CLC Number:
WU Ningshan, WANG Jiaxi, ZHANG Yan, YUAN Mutian, ZHANG Qi, GAO Chiyu. Determining tree species and crown width from unmanned aerial vehicle imagery in hilly loess region of west Shanxi, China: a case study from Caijiachuan watershed[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1505-1518.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.08.18
样地类型 Plot type | 经度 Longitude/(°) | 纬度 Latitude/(°) | 海拔高度 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect |
---|---|---|---|---|---|
油松Pinus tabuliformis | 110°45'32″E | 36°16'30″N | 1 117 | 26 | S195° |
侧柏Platycladus orientalis | 110°45'54″E | 36°16'24″N | 1 120 | 28 | SE145° |
刺槐Robinia pseudoacacia | 110°44'29″E | 36°16'33″N | 1 173 | 16 | N17° |
次生林Secondary forest | 110°44'10″E | 36°16'02″N | 1 044 | 21 | S166° |
油松侧柏混交林Pinus tabuliformis & Platycladus orientalis mixed forest | 110°45'34″E | 36°16'25″N | 1 120 | 28 | W275° |
刺槐油松混交林 | 110°45'33″E | 36°16'31″N | 1 120 | 35 | W254° |
Robinia pseudoacacia & Pinus tabuliformis mixed forest | |||||
刺槐侧柏混交林 | 110°44'23″E | 36°16'34″N | 1 195 | 33 | SE126° |
Robinia pseudoacacia & Platycladus orientalis mixed forest | |||||
梨Pyrus spp. | 110°44'52″E | 36°16'37″N | 1 171 | 8 | SE175° |
苹果Malus domestica | 110°45'08″E | 36°16'20″N | 1 109 | 13 | NE56° |
山杏Armeniaca vulgaris | 110°44'57″E | 36°16'38″N | 1 170 | 12 | NE37° |
Table 1 Information of sample plots
样地类型 Plot type | 经度 Longitude/(°) | 纬度 Latitude/(°) | 海拔高度 Altitude/m | 坡度 Slope/(°) | 坡向 Aspect |
---|---|---|---|---|---|
油松Pinus tabuliformis | 110°45'32″E | 36°16'30″N | 1 117 | 26 | S195° |
侧柏Platycladus orientalis | 110°45'54″E | 36°16'24″N | 1 120 | 28 | SE145° |
刺槐Robinia pseudoacacia | 110°44'29″E | 36°16'33″N | 1 173 | 16 | N17° |
次生林Secondary forest | 110°44'10″E | 36°16'02″N | 1 044 | 21 | S166° |
油松侧柏混交林Pinus tabuliformis & Platycladus orientalis mixed forest | 110°45'34″E | 36°16'25″N | 1 120 | 28 | W275° |
刺槐油松混交林 | 110°45'33″E | 36°16'31″N | 1 120 | 35 | W254° |
Robinia pseudoacacia & Pinus tabuliformis mixed forest | |||||
刺槐侧柏混交林 | 110°44'23″E | 36°16'34″N | 1 195 | 33 | SE126° |
Robinia pseudoacacia & Platycladus orientalis mixed forest | |||||
梨Pyrus spp. | 110°44'52″E | 36°16'37″N | 1 171 | 8 | SE175° |
苹果Malus domestica | 110°45'08″E | 36°16'20″N | 1 109 | 13 | NE56° |
山杏Armeniaca vulgaris | 110°44'57″E | 36°16'38″N | 1 170 | 12 | NE37° |
Fig.3 Unmanned aerial vehicle image (a),extracted tree species (B) and partial enlarged view of Pinus tabuliformis and Robinia pseudoacacia(c) in plantation sub-watershed
类型 Type | 苹果 Malus domestica | 刺槐 Robinia pseudoacacia | 灌木 Shrub | 其他乔木 Other tree species | 建设用地 Construction land | 旱地 Dry land | 合计 Total | 用户精度 User accuracy/% |
---|---|---|---|---|---|---|---|---|
苹果Malus domestica | 51 | 0 | 3 | 0 | 0 | 2 | 56 | 91.1 |
刺槐Robinia pseudoacacia | 0 | 67 | 2 | 3 | 0 | 0 | 72 | 93.1 |
灌木Shrub | 0 | 0 | 33 | 2 | 1 | 0 | 36 | 91.7 |
其他乔木Other tree species | 1 | 4 | 0 | 43 | 0 | 0 | 48 | 89.6 |
建设用地Construction land | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 100 |
旱地Dry land | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 100 |
合计Total | 52 | 71 | 38 | 48 | 10 | 10 | — | — |
生产者精度Producer accuracy/% | 98.1 | 94.4 | 86.8 | 89.6 | 90.0 | 80.0 | — | — |
Table 2 Classification confusion matrix of farmland sub-watershed
类型 Type | 苹果 Malus domestica | 刺槐 Robinia pseudoacacia | 灌木 Shrub | 其他乔木 Other tree species | 建设用地 Construction land | 旱地 Dry land | 合计 Total | 用户精度 User accuracy/% |
---|---|---|---|---|---|---|---|---|
苹果Malus domestica | 51 | 0 | 3 | 0 | 0 | 2 | 56 | 91.1 |
刺槐Robinia pseudoacacia | 0 | 67 | 2 | 3 | 0 | 0 | 72 | 93.1 |
灌木Shrub | 0 | 0 | 33 | 2 | 1 | 0 | 36 | 91.7 |
其他乔木Other tree species | 1 | 4 | 0 | 43 | 0 | 0 | 48 | 89.6 |
建设用地Construction land | 0 | 0 | 0 | 0 | 9 | 0 | 9 | 100 |
旱地Dry land | 0 | 0 | 0 | 0 | 0 | 8 | 8 | 100 |
合计Total | 52 | 71 | 38 | 48 | 10 | 10 | — | — |
生产者精度Producer accuracy/% | 98.1 | 94.4 | 86.8 | 89.6 | 90.0 | 80.0 | — | — |
类型 Type | 侧柏 Platycladus orientalis | 刺槐 Robinia pseudoacacia | 油松 Pinus tabuliformis | 梨 Pyrus spp. | 苹果 Malus domestica | 灌木 Shrub | 其他乔木 Other tree species | 裸地 Bare land | 道路 Road | 合计 Total | 用户精度 User accuracy/% |
---|---|---|---|---|---|---|---|---|---|---|---|
侧柏Platycladus orientalis | 30 | 9 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 44 | 68.2 |
刺槐Robinia pseudoacacia | 2 | 47 | 4 | 0 | 1 | 0 | 7 | 0 | 1 | 62 | 75.8 |
油松Pinus tabuliformis | 1 | 4 | 31 | 0 | 0 | 0 | 3 | 0 | 0 | 39 | 79.5 |
梨Pyrus spp. | 0 | 0 | 0 | 29 | 3 | 1 | 0 | 0 | 0 | 33 | 87.9 |
苹果Malus domestica | 0 | 0 | 0 | 0 | 32 | 5 | 0 | 0 | 0 | 37 | 86.5 |
灌木Shrub | 1 | 2 | 1 | 2 | 3 | 22 | 0 | 1 | 0 | 32 | 68.8 |
其他乔木 | 1 | 4 | 2 | 0 | 0 | 3 | 22 | 0 | 0 | 32 | 73.3 |
Other tree species | |||||||||||
裸地Bare land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 14 | 78.6 |
道路Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 5 | 80.0 |
合计Total | 35 | 66 | 38 | 31 | 39 | 33 | 35 | 13 | 8 | — | — |
生产者精度 | 85.7 | 71.2 | 81.6 | 93.6 | 82.1 | 66.7 | 62.9 | 84.6 | 50.0 | — | — |
Producer accuracy/% |
Table 3 Classification confusion matrix of plantation sub-watershed
类型 Type | 侧柏 Platycladus orientalis | 刺槐 Robinia pseudoacacia | 油松 Pinus tabuliformis | 梨 Pyrus spp. | 苹果 Malus domestica | 灌木 Shrub | 其他乔木 Other tree species | 裸地 Bare land | 道路 Road | 合计 Total | 用户精度 User accuracy/% |
---|---|---|---|---|---|---|---|---|---|---|---|
侧柏Platycladus orientalis | 30 | 9 | 0 | 0 | 0 | 2 | 3 | 0 | 0 | 44 | 68.2 |
刺槐Robinia pseudoacacia | 2 | 47 | 4 | 0 | 1 | 0 | 7 | 0 | 1 | 62 | 75.8 |
油松Pinus tabuliformis | 1 | 4 | 31 | 0 | 0 | 0 | 3 | 0 | 0 | 39 | 79.5 |
梨Pyrus spp. | 0 | 0 | 0 | 29 | 3 | 1 | 0 | 0 | 0 | 33 | 87.9 |
苹果Malus domestica | 0 | 0 | 0 | 0 | 32 | 5 | 0 | 0 | 0 | 37 | 86.5 |
灌木Shrub | 1 | 2 | 1 | 2 | 3 | 22 | 0 | 1 | 0 | 32 | 68.8 |
其他乔木 | 1 | 4 | 2 | 0 | 0 | 3 | 22 | 0 | 0 | 32 | 73.3 |
Other tree species | |||||||||||
裸地Bare land | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11 | 3 | 14 | 78.6 |
道路Road | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 5 | 80.0 |
合计Total | 35 | 66 | 38 | 31 | 39 | 33 | 35 | 13 | 8 | — | — |
生产者精度 | 85.7 | 71.2 | 81.6 | 93.6 | 82.1 | 66.7 | 62.9 | 84.6 | 50.0 | — | — |
Producer accuracy/% |
Fig.7 Linear regression result of measured and automatically extracted crown width a is Pinus tabuliformis; b is Platycladus orientalis; c is Robinia pseudoacacia; d is Robinia pseudoacacia L. and Pinus tabuliformis mixed forest; e is Robinia pseudoacacia L. and Platycladus orientalis mixed forest; f is the Pinus tabuliformis and Platycladus orientalis mixed forest; g is Malus domestica; h is Armeniaca vulgairs; i is Pyrus spp.; j is secondary forest.
Fig.8 Canopy extraction result for Pinus tabuliformis Carr. (a, b) and Malus domestica Borkh. (b, d) in plantation sub-watershed (a, c) and farmland sub-watersheds (b, d)
子流域 Sub-watershed | 树种 Tree species | 株数 Plant number | 林分密度 Stand density/hm-2 | 郁闭度 Canopy density/% | 平均冠幅 Average crown width/m |
---|---|---|---|---|---|
人工林子流域Plantation sub-watershed | 油松Pinus tabuliformis | 8 268 | 1 744 | 68.70 | 2.24 |
苹果Malus domestica | 491 | 382 | 50.40 | 4.26 | |
刺槐Robinia pseudoacacia | 14 339 | 997 | 97.00 | 3.52 | |
侧柏Platycladus orientalis | 941 | 1 862 | 55.58 | 1.95 | |
梨Pyrus spp. | 107 | 502 | 63.36 | 4.01 | |
农牧复合子流域Agro-pastoral sub-watershed | 油松Pinus tabuliformis | 2 155 | 1 051 | 61.90 | 2.74 |
农地子流域Farmland sub-watershed | 苹果Malus domestica | 912 | 439 | 50.90 | 3.84 |
Table 4 Crownwidth in different sub-watersheds
子流域 Sub-watershed | 树种 Tree species | 株数 Plant number | 林分密度 Stand density/hm-2 | 郁闭度 Canopy density/% | 平均冠幅 Average crown width/m |
---|---|---|---|---|---|
人工林子流域Plantation sub-watershed | 油松Pinus tabuliformis | 8 268 | 1 744 | 68.70 | 2.24 |
苹果Malus domestica | 491 | 382 | 50.40 | 4.26 | |
刺槐Robinia pseudoacacia | 14 339 | 997 | 97.00 | 3.52 | |
侧柏Platycladus orientalis | 941 | 1 862 | 55.58 | 1.95 | |
梨Pyrus spp. | 107 | 502 | 63.36 | 4.01 | |
农牧复合子流域Agro-pastoral sub-watershed | 油松Pinus tabuliformis | 2 155 | 1 051 | 61.90 | 2.74 |
农地子流域Farmland sub-watershed | 苹果Malus domestica | 912 | 439 | 50.90 | 3.84 |
[1] | 何远梅, 姚文俊, 张岩, 等. 黄土高原区植被恢复的空间差异性分析[J]. 中国水土保持科学, 2015, 13(2):63-69. |
HE Y M, YAO W J, ZHANG Y, et al. Spatial variability of vegetation restoration on the Loess Plateau based on MODIS/NDVI[J]. Science of Soil and Water Conservation, 2015, 13(2):63-69.(in Chinese with English abstract) | |
[2] |
HILKER T, LYAPUSTIN A I, HALL F G, et al. On the measurability of change in Amazon vegetation from MODIS[J]. Remote Sensing of Environment, 2015, 166:233-242.
DOI URL |
[3] | 陈宝强, 张建军, 赵荣玮, 等. 晋西黄土区陡坡植被自然恢复评价[J]. 生态学杂志, 2018, 37(1):17-25. |
CHEN B Q, ZHANG J J, ZHAO R W, et al. Evaluating natural restoration of vegetation on steep slopes in the Loess Plateau, Shanxi Province[J]. Chinese Journal of Ecology, 2018, 37(1):17-25.(in Chinese with English abstract) | |
[4] | 张含玉, 方怒放, 史志华. 黄土高原植被覆盖时空变化及其对气候因子的响应[J]. 生态学报, 2016, 36(13):3960-3968. |
ZHANG H Y, FANG N F, SHI Z H. Spatio-temporal patterns for the NDVI and its responses to climatic factors in the Loess Plateau, China[J]. Acta Ecologica Sinica, 2016, 36(13):3960-3968.(in Chinese with English abstract) | |
[5] | 范建忠, 李登科, 董金芳. 陕西省重点生态建设工程区植被恢复状况遥感监测[J]. 农业工程学报, 2012, 28(7):228-234. |
FAN J Z, LI D K, DONG J F. Remote sensing analysis of vegetation restoration in key ecological construction areas of Shaanxi Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(7):228-234.(in Chinese with English abstract) | |
[6] | 颜梅春. 高分辨率影像的植被分类方法对比研究[J]. 遥感学报, 2007, 11(2):235-240. |
YAN M C. Research and contrast on several vegetation-classification methods of high-resolution satellite image data[J]. Journal of Remote Sensing, 2007, 11(2):235-240.(in Chinese with English abstract) | |
[7] |
BRYSON M, REID A, RAMOS F, et al. Airborne vision-based mapping and classification of large farmland environments[J]. Journal of Field Robotics, 2010, 27(5):632-655.
DOI URL |
[8] | 汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5):152-157. |
WANG X Q, WANG M M, WANG S Q, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5):152-157.(in Chinese with English abstract) | |
[9] | 杜凤兰, 田庆久, 夏学齐, 等. 面向对象的地物分类法分析与评价[J]. 遥感技术与应用, 2004, 19(1):20-23. |
DU F L, TIAN Q J, XIA X Q, et al. Object-oriented image classification analysis and evaluation[J]. Remote Sensing Technology and Application, 2004, 19(1):20-23.(in Chinese with English abstract) | |
[10] | 刘萌萌, 刘亚岚, 孙国庆, 等. 结合纹理特征的SVM样本分层土地覆盖分类[J]. 遥感技术与应用, 2014, 29(2):315-323. |
LIU M M, LIU Y L, SUN G Q, et al. SVM land cover classification based on spectral and textural features using stratified samples[J]. Remote Sensing Technology and Application, 2014, 29(2):315-323.(in Chinese with English abstract) | |
[11] | 李莹, 于海洋, 王燕, 等. 基于无人机重建点云与影像的城市植被分类[J]. 国土资源遥感, 2019, 31(1):149-155. |
LI Y, YU H Y, WANG Y, et al. Classification of urban vegetation based on unmanned aerial vehicle reconstruction point cloud and image[J]. Remote Sensing for Land & Resources, 2019, 31(1):149-155.(in Chinese with English abstract) | |
[12] | 袁慧洁. 基于无人机遥感和面向对象法的简单地物分类研究[J]. 测绘与空间地理信息, 2020, 43(3):113-117. |
YUAN H J. Research on simple object classification based on UAV remote sensing and object-oriented method[J]. Geomatics & Spatial Information Technology, 2020, 43(3):113-117.(in Chinese with English abstract) | |
[13] | 朱恩泽, 宋伟东, 戴激光. 改进支持向量机的高分遥感影像道路提取[J]. 测绘科学, 2016, 41(12):224-228. |
ZHU E Z, SONG W D, DAI J G. Road extraction of high-resolution remote sensing images based on improved SVM[J]. Science of Surveying and Mapping, 2016, 41(12):224-228.(in Chinese with English abstract) | |
[14] | DAI P Q, DING L X, LIU L J, et al. Tree species identification based on FCN using the visible images obtained from an unmanned aerial vehicle[J]. Laser & Optoelectronics Progress, 2020, 57(10):36-45. (in Chinese with English abstract) |
[15] |
耿仁方, 付波霖, 蔡江涛, 等. 基于无人机影像和面向对象随机森林算法的岩溶湿地植被识别方法研究[J]. 地球信息科学学报, 2019, 21(8):1295-1306.
DOI |
GENG R F, FU B L, CAI J T, et al. Object-based Karst wetland vegetation classification method using unmanned aerial vehicle images and random forest algorithm[J]. Journal of Geo-Information Science, 2019, 21(8):1295-1306.(in Chinese with English abstract) | |
[16] |
温小乐, 钟奥, 胡秀娟. 基于随机森林特征选择的城市绿化乔木树种分类[J]. 地球信息科学学报, 2018, 20(12):1777-1786.
DOI |
WEN X L, ZHONG A, HU X J. The classification of urban greening tree species based on feature selection of random forest[J]. Journal of Geo-Information Science, 2018, 20(12):1777-1786.(in Chinese with English abstract) | |
[17] | 王熊, 胡兵, 韩泽民, 等. 基于GF-2号影像的森林优势树种分类[J]. 湖北林业科技, 2020, 49(1):1-7. |
WANG X, HU B, HAN Z M, et al. Dominant tree species specific classified by GF-2 imagery[J]. Hubei Forestry Science and Technology, 2020, 49(1):1-7.(in Chinese with English abstract) | |
[18] |
DE PINHO C M D, FONSECA L M G, KORTING T S, et al. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis[J]. International Journal of Remote Sensing, 2012, 33(19):5973-5995.
DOI URL |
[19] |
PACIFICI F, DEL FRATE F, SOLIMINI C, et al. An innovative neural-net method to detect temporal changes in high-resolution optical satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(9):2940-2952.
DOI URL |
[20] |
ZHANG C Y, XIE Z X. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectralimagery[J]. Remote Sensing of Environment, 2012, 124:310-320.
DOI URL |
[21] | 徐军. 多尺度分割与案例推理的高分辨率遥感影像信息提取方法[D]. 武汉: 武汉大学, 2017. |
XU J. High resolution remote sensing image information extraction method for multi-scale segmentation and case-based reasoning[D]. Wuhan: Wuhan University, 2017. (in Chinese with English abstract) | |
[22] |
GARZON-LOPEZ C X, BOHLMAN S A, OLFF H, et al. Mapping tropical forest trees using high-resolution aerial digital photographs[J]. Biotropica, 2013, 45(3):308-316.
DOI URL |
[23] |
PANAGIOTIDIS D, ABDOLLAHNEJAD A, SUROVý P, et al. Determining tree height and crown diameter from high-resolution UAV imagery[J]. International Journal of Remote Sensing, 2017, 38(8/9/10):2392-2410.
DOI URL |
[24] | HERNÁNDEZ J G, FERREIRO E G, SARMENTO A, et al. Using high resolution UAV imagery to estimate tree variables in Pinus pinea plantation in Portugal[J]. Forest Systems, 2016, 25(2): eSC09. |
[25] | 李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5):180-187. |
LI D, ZHANG J J, ZHAO M X. Extraction of stand factors in UAV image based on FCM and watershed algorithm[J]. Scientia Silvae Sinicae, 2019, 55(5):180-187.(in Chinese with English abstract) | |
[26] | 王枚梅, 林家元, 林沂, 等. 基于无人机可见光影像的亚高山针叶林树冠参数信息自动提取[J]. 林业资源管理, 2017(4):82-88. |
WANG M M, LIN J Y, LIN Y, et al. Subalpine coniferous forest crown information automatic extraction based on optical UAV remote sensing imagery[J]. Forest Resources Management, 2017(4):82-88.(in Chinese with English abstract) | |
[27] | 孙钊, 潘磊, 孙玉军. 基于无人机影像的高郁闭度杉木纯林树冠参数提取[J]. 北京林业大学学报, 2020, 42(10):20-26. |
SUN Z, PAN L, SUN Y J. Extraction of tree crown parameters from high-density pure Chinese fir plantations based on UAV images[J]. Journal of Beijing Forestry University, 2020, 42(10):20-26.(in Chinese with English abstract) | |
[28] | 郭宝妮, 张建军, 黄明, 等. 吉县蔡家川流域不同树龄刺槐林和油松林土壤微团聚体分形特征研究[J]. 土壤通报, 2012, 43(4):787-792. |
GUO B N, ZHANG J J, HUANG M, et al. Study on fractal features of soil micro-aggregates under the Robinia pseudoacacia and Pinus tabulaeformis of different ages in Caijiachuan watershed of Ji County[J]. Chinese Journal of Soil Science, 2012, 43(4):787-792.(in Chinese with English abstract) | |
[29] | 李敏敏, 魏天兴, 李信良, 等. 黄土区蔡家川流域刺槐人工林林下物种多样性[J]. 浙江农林大学学报, 2018, 35(2):227-234. |
LI M M, WEI T X, LI X L, et al. Species diversity in the understory of a Robinia pseudoacacia plantation in the Caijiachuan Watershed of the Loess Plateau[J]. Journal of Zhejiang A & F University, 2018, 35(2):227-234.(in Chinese with English abstract) | |
[30] | 周龙君, 陈晓芬, 杨利娟. 面向对象标准最邻近分类法在地理国情监测中的应用[J]. 测绘与空间地理信息, 2016, 39(5):155-157. |
ZHOU L J, CHEN X F, YANG L J. Object-based standard nearest neighbor classification used in national geomaticsmonitoring[J]. Geomatics & Spatial Information Technology, 2016, 39(5):155-157.(in Chinese with English abstract) | |
[31] | 郑明国, 蔡强国, 秦明周, 等. 一种遥感影像分类精度检验的新方法[J]. 遥感学报, 2006, 10(1):39-48. |
ZHENG M G, CAI Q G, QIN M Z, et al. A new approach to accuracy assessment of classifications of remotely sensed data[J]. Journal of Remote Sensing, 2006, 10(1):39-48.(in Chinese with English abstract) | |
[32] | 李巍岳, 胡志斌, 闫巧玲. 基于ETM+影像的森林资源信息提取: 以黄土高原丘陵沟壑区水土保持林为例[J]. 生态学杂志, 2009, 28(9):1737-1742. |
LI W Y, HU Z B, YAN Q L. Information extraction of forest resources based on ETM+ image: a case study of water and soil conservation forest in a hilly and gully area of Loess Plateau[J]. Chinese Journal of Ecology, 2009, 28(9):1737-1742.(in Chinese with English abstract) | |
[33] | 井然, 邓磊, 赵文吉, 等. 基于可见光植被指数的面向对象湿地水生植被提取方法[J]. 应用生态学报, 2016, 27(5):1427-1436. |
JING R, DENG L, ZHAO W J, et al. Object-oriented aquatic vegetation extracting approach based on visible vegetation indices[J]. Chinese Journal of Applied Ecology, 2016, 27(5):1427-1436.(in Chinese with English abstract) | |
[34] | 张安定. 遥感原理与应用题解[M]. 北京: 科学出版社, 2016. |
[35] | 张俊, 朱国龙, 李妍. 面向对象高分辨率影像信息提取中的尺度效应及最优尺度研究[J]. 测绘科学, 2011, 36(2):107-109. |
ZHANG J, ZHU G L, LI Y. Scale effect and optimal scale in object-oriented information extraction of high spatial resolution remote sensing image[J]. Science of Surveying and Mapping, 2011, 36(2):107-109.(in Chinese with English abstract) | |
[36] | 张正健, 李爱农, 雷光斌, 等. 基于多尺度分割和决策树算法的山区遥感影像变化检测方法: 以四川攀西地区为例[J]. 生态学报, 2014, 34(24):7222-7232. |
ZHANG Z J, LI A N, LEI G B, et al. Change detection of remote sensing images based on multiscale segmentation and decision tree algorithm over mountainous area: a case study in Panxi region, Sichuan Province[J]. Acta Ecologica Sinica, 2014, 34(24):7222-7232.(in Chinese with English abstract) | |
[37] |
DRǍGUT L, CSILLIK O, EISANK C, et al. Automated parameterisation for multi-scale image segmentation on multiple layers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 88:119-127.
DOI URL |
[38] | 刘凯. 基于多源数据的黄土高原(重点流失区)侵蚀沟提取及区域差异性研究[D]. 南京: 南京师范大学, 2017. |
LIU K. Gully features extraction and the regional difference analysis in the severe soil erosion region of Loess Plateau of China based on multisource data[D]. Nanjing: Nanjing Normal University, 2017. (in Chinese with English abstract) | |
[39] | 万红梅, 李霞, 董道瑞, 等. 塔里木河下游林地树冠QuickBird影像信息提取与分析[J]. 西北植物学报, 2011, 31(9):1878-1885. |
WAN H M, LI X, DONG D R, et al. Abstraction and analysis of tree-crown of forest land based on QuickBird image in the lower reaches of Tarim River[J]. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(9):1878-1885.(in Chinese with English abstract) | |
[40] | 杨柳, 陈延辉, 岳德鹏, 等. 无人机遥感影像的城市绿地信息提取[J]. 测绘科学, 2017, 42(2):59-64. |
YANG L, CHEN Y H, YUE D P, et al. Information extraction of urban green space based on UAV remote sensing image[J]. Science of Surveying and Mapping, 2017, 42(2):59-64.(in Chinese with English abstract) | |
[41] | 牛利伟. 基于无人机倾斜摄影测量的行道树特征提取与分类研究[D]. 北京: 北京林业大学, 2020. |
NIU L W. Research on feature extraction and classification of street trees based on UAV incline photogrammetry[D]. Beijing: Beijing Forestry University, 2020. (in Chinese with English abstract) | |
[42] | 乔正年, 马骏, 徐雁南. 无人机遥感在林木冠幅提取中的应用[J]. 林业资源管理, 2019(1):78-84. |
QIAO Z N, MA J, XU Y N. Application of UAV remote sensing in measuring canopy[J]. Forest Resources Management, 2019(1):78-84.(in Chinese with English abstract) | |
[43] | 曾霞辉, 王颖, 曾掌权, 等. 无人机影像树冠信息提取研究[J]. 中南林业科技大学学报, 2020, 40(8):75-82. |
ZENG X H, WANG Y, ZENG Z Q, et al. Research on extraction of tree crown information from UAV images[J]. Journal of Central South University of Forestry & Technology, 2020, 40(8):75-82.(in Chinese with English abstract) |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||