Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (7): 1402-1411.DOI: 10.3969/j.issn.1004-1524.2022.07.07
• Animal Science • Previous Articles Next Articles
LIU Pengcheng1(
), ZHANG Ji1, QIU Ganyuan1, GONG Yu2, LI Xuesong2, LI Wei2, ZHANG Yiyu1, LIU Ruoyu1,*(
)
Received:2020-11-17
Online:2022-07-25
Published:2022-07-26
Contact:
LIU Ruoyu
CLC Number:
LIU Pengcheng, ZHANG Ji, QIU Ganyuan, GONG Yu, LI Xuesong, LI Wei, ZHANG Yiyu, LIU Ruoyu. Single nucleotide polymorphism screening and bioinformatics analysis of TBC1D7 gene in Guanling cattle[J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1402-1411.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.07.07
| 引物名称 Primer name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer(5'→3') | 产物长度 Product length/bp | 退火温度 Annealing temperature/ ℃ | 扩增区域 Amplified region |
|---|---|---|---|---|---|
| P1 | CCCTGACGCCGAGGTAAC | CGTCCTCCAGGAAGAAATCA | 397 | 56 | 3'UTR-Exon1-Intron1 |
| P2 | TGGCGAAAATCACGGAAT | TCTGGGATGACTGAGAACCA | 248 | 58 | Intron1-Exon2-Intron2 |
| P3 | TCACGATCAGCATGAAAAGC | ACCAATGACCCCATCAATTT | 197 | 58 | Intron1-Exon3-Intron2 |
| P4 | CCCACCCCGGGTCTCTAT | AGAGTCAAGCCAAGGGTCAA | 245 | 60 | Intron1-Exon4-Intron2 |
| P5 | TCTCTTGCCTCCTTGAGTTG | TGGTAAGGGCATTTCCTCAG | 250 | 54 | Intron1-Exon5-Intron2 |
| P6 | TGAGTAATCTCTTCCCCTTCAATC | CAGGATTTTTCTGACTCTGTGC | 226 | 54 | Intron1-Exon6-Intron2 |
| P7 | TTTGAAACTTGAGCTGTTTAGGTG | TTCAAGTGAAGCAAAGCACA | 227 | 58 | Intron1-Exon7-Intron2 |
| P8.1 | TTTCAGAGCCTGGTCTGCTT | CCACCCTGCATCTAATGACC | 938 | 62 | Intron7-Exon8-5'UTR |
| P8.2 | GGACTTGATGCTTTGCTGAA | GTATGGCATTTGGGATGGAC | 783 | 58 | Intron7-Exon8-5'UTR |
| P8.3 | AGGTCCTTGTTGGTCATCCA | TTCTGGAGCCAGGACTCACT | 478 | 62 | Intron7-Exon8-5'UTR |
Table 1 Primer information of TBC1D7 gene in Guanling cattle
| 引物名称 Primer name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer(5'→3') | 产物长度 Product length/bp | 退火温度 Annealing temperature/ ℃ | 扩增区域 Amplified region |
|---|---|---|---|---|---|
| P1 | CCCTGACGCCGAGGTAAC | CGTCCTCCAGGAAGAAATCA | 397 | 56 | 3'UTR-Exon1-Intron1 |
| P2 | TGGCGAAAATCACGGAAT | TCTGGGATGACTGAGAACCA | 248 | 58 | Intron1-Exon2-Intron2 |
| P3 | TCACGATCAGCATGAAAAGC | ACCAATGACCCCATCAATTT | 197 | 58 | Intron1-Exon3-Intron2 |
| P4 | CCCACCCCGGGTCTCTAT | AGAGTCAAGCCAAGGGTCAA | 245 | 60 | Intron1-Exon4-Intron2 |
| P5 | TCTCTTGCCTCCTTGAGTTG | TGGTAAGGGCATTTCCTCAG | 250 | 54 | Intron1-Exon5-Intron2 |
| P6 | TGAGTAATCTCTTCCCCTTCAATC | CAGGATTTTTCTGACTCTGTGC | 226 | 54 | Intron1-Exon6-Intron2 |
| P7 | TTTGAAACTTGAGCTGTTTAGGTG | TTCAAGTGAAGCAAAGCACA | 227 | 58 | Intron1-Exon7-Intron2 |
| P8.1 | TTTCAGAGCCTGGTCTGCTT | CCACCCTGCATCTAATGACC | 938 | 62 | Intron7-Exon8-5'UTR |
| P8.2 | GGACTTGATGCTTTGCTGAA | GTATGGCATTTGGGATGGAC | 783 | 58 | Intron7-Exon8-5'UTR |
| P8.3 | AGGTCCTTGTTGGTCATCCA | TTCTGGAGCCAGGACTCACT | 478 | 62 | Intron7-Exon8-5'UTR |
| 突变位点 Mutation site | 等位基因频率Allele frequency | |
|---|---|---|
| 突变前Before mutation | 突变后After mutation | |
| c.402T>C | 0.609 2 | 0.390 8 |
| c.414A>G | 0.607 1 | 0.392 9 |
| c.609C>T | 0.5254 | 0.474 6 |
| c.648T>C | 0.523 8 | 0.476 2 |
Table 2 Estimation of allele frequency of TBC1D7 gene mutation site in Guanling cattle
| 突变位点 Mutation site | 等位基因频率Allele frequency | |
|---|---|---|
| 突变前Before mutation | 突变后After mutation | |
| c.402T>C | 0.609 2 | 0.390 8 |
| c.414A>G | 0.607 1 | 0.392 9 |
| c.609C>T | 0.5254 | 0.474 6 |
| c.648T>C | 0.523 8 | 0.476 2 |
| 氨基酸 Amino acid | 数量 Number | 比例 Frequency/% | 氨基酸 Amino acid | 数量 Number | 比例 Frequency/% |
|---|---|---|---|---|---|
| Ala | 16 | 5.5 | Leu | 35 | 11.9 |
| Arg | 14 | 4.8 | Lys | 23 | 7.8 |
| Asn | 6 | 2.0 | Met | 8 | 2.7 |
| Asp | 15 | 5.1 | Phe | 14 | 4.8 |
| Cys | 9 | 3.1 | Pro | 15 | 5.1 |
| Gln | 10 | 3.4 | Ser | 26 | 8.9 |
| Glu | 23 | 7.8 | Thr | 9 | 3.1 |
| Gly | 7 | 2.4 | Trp | 5 | 1.7 |
| His | 9 | 3.1 | Tyr | 11 | 3.8 |
| Ile | 14 | 4.8 | Val | 24 | 8.2 |
Table 3 Amino acid composition of TBC1D7 encoding protein in Guanling cattle
| 氨基酸 Amino acid | 数量 Number | 比例 Frequency/% | 氨基酸 Amino acid | 数量 Number | 比例 Frequency/% |
|---|---|---|---|---|---|
| Ala | 16 | 5.5 | Leu | 35 | 11.9 |
| Arg | 14 | 4.8 | Lys | 23 | 7.8 |
| Asn | 6 | 2.0 | Met | 8 | 2.7 |
| Asp | 15 | 5.1 | Phe | 14 | 4.8 |
| Cys | 9 | 3.1 | Pro | 15 | 5.1 |
| Gln | 10 | 3.4 | Ser | 26 | 8.9 |
| Glu | 23 | 7.8 | Thr | 9 | 3.1 |
| Gly | 7 | 2.4 | Trp | 5 | 1.7 |
| His | 9 | 3.1 | Tyr | 11 | 3.8 |
| Ile | 14 | 4.8 | Val | 24 | 8.2 |
Fig.4 Hydrophilic/hydrophobic predictions of TBC1D7 encoding protein in Guanling cattle The positive value means the hydrophobicity,negative means hydrophilicity.
| [1] |
LATRES E, AMINI A R, AMINI A A, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway[J]. Journal of Biological Chemistry, 2005, 280(4):2737-2744.
DOI URL |
| [2] | 余婕, 晏向华. 氨基酸调节哺乳动物雷帕霉素靶蛋白复合体1信号通路的分子机制[J]. 动物营养学报, 2015, 27(7): 2012-2017. |
| YU J, YAN X H. Molecular mechanism of amino acids in regulation of mammalian target of rapamycin complex 1 signaling pathway[J]. Chinese Journal of Animal Nutrition, 2015, 27(7): 2012-2017. (in Chinese with English abstract) | |
| [3] | DIBBLE C C, ELIS W, MENON S, et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1[J]. Molecular Cell, 2012, 47(4): 535-546. |
| [4] | 任肃霞. TBC1D7对个体生长调控的研究[D]. 北京: 中国农业大学, 2017. |
| REN S X. Studies of systemic growth regulation by tre2-bud2-cdc16 (TBC) domain family, member 7 (TBC1D7)[D]. Beijing: China Agricultural University, 2017. (in Chinese with English abstract) | |
| [5] | 罗启华, 王安娜. 贵州关岭黄牛发展现状与思考[J]. 草食家畜, 2011(4): 15-16. |
| LUO Q H, WANG A N. Guizhou Guanling cattle development status and thinking[J]. Grass-Feeding Livestock, 2011(4): 15-16. (in Chinese with English abstract) | |
| [6] |
杨永江, 吴恩芸, 任稳稳, 等. 中国荷斯坦牛TLR2基因SNPs的快速筛查及等位基因频率的估算[J]. 浙江农业学报, 2018, 30(8): 1321-1327.
DOI |
| YANG Y J, WU E Y, REN W W, et al. SNP screening and protein function prediction of TLR2 gene in Chinese Holstein cattle[J]. Acta Agriculturae Zhejiangensis, 2018, 30(8): 1321-1327. (in Chinese with English abstract) | |
| [7] | 李强子, 朱国强, 刘吴鑫, 等. 荷斯坦牛TLR6基因CDS区的生物信息学分析[J]. 江苏农业学报, 2016, 32(3): 608-614. |
| LI Q Z, ZHU G Q, LIU W X, et al. Bioinformatics analysis of CDS of TLR6 gene in Holstein cattle[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(3): 608-614. (in Chinese with English abstract) | |
| [8] |
吴恩芸, 任稳稳, 李耀东, 等. 中国荷斯坦牛TLR1基因SNPs快速筛查及蛋白功能预测[J]. 核农学报, 2019, 33(10): 1940-1948.
DOI |
| WU E Y, REN W W, LI Y D, et al. Rapidly screening of TLR1 gene SNPs and prediction of protein function in Chinese Holstein cattle[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 1940-1948. (in Chinese with English abstract) | |
| [9] |
张丽, 刘丽霞, 李强子, 等. 天祝白牦牛MSTN基因编码区克隆及生物信息学分析[J]. 浙江农业学报, 2017, 29(4): 618-624.
DOI |
|
ZHANG L, LIU L X, LI Q Z, et al. Cloning and bioinformatics analysis of MSTN gene of Tianzhu white yak[J]. Acta Agriculturae Zhejiangensis, 2017, 29(4): 618-624. (in Chinese with English abstract)
DOI |
|
| [10] |
KYTE J, DOOLITTLE R F. A simple method for displaying the hydropathic character of a protein[J]. Journal of Molecular Biology, 1982, 157(1): 105-132.
DOI URL |
| [11] |
GAI Z C, CHU W D, DENG W, et al. Structure of the TBC1D7-TSC1 complex reveals that TBC1D7 stabilizes dimerization of the TSC1 C-terminal coiled coil region[J]. Journal of Molecular Cell Biology, 2016, 8(5): 411-425.
DOI URL |
| [12] |
MADIGAN J P, HOU F, YE L L, et al. The tuberous sclerosis complex subunit TBC1D7 is stabilized by Akt phosphorylation-mediated 14-3-3 binding[J]. Journal of Biological Chemistry, 2018, 293(42): 16142-16159.
DOI URL |
| [13] | 盖中朝, 王兵. 人类TBC1D7蛋白的表达纯化及其在mTOR通路中的作用机制研究[J]. 华中师范大学学报(自然科学版), 2020, 54(1): 79-88. |
| GAI Z C, WANG B. Purification of human TBC1D7 protein and its functional mechanism in mTOR signaling[J]. Journal of Central China Normal University (Natural Sciences), 2020, 54(1): 79-88. (in Chinese with English abstract) | |
| [14] |
KIM J, GUAN K L. mTOR as a central hub of nutrient signalling and cell growth[J]. Nature Cell Biology, 2019, 21(1): 63-71.
DOI URL |
| [15] | 何俏军, 董晓武, 朱虹, 等. PI3K-Akt-mTOR通路及其小分子抑制剂的研究进展[J]. 中国生化药物杂志, 2016, 36(8): 6-15. |
| HE Q J, DONG X W, ZHU H, et al. Research progress of small molecule inhibitors targeting PI3K-Akt-mTOR pathway[J]. Chinese Journal of Biochemical and Pharmaceutics, 2016, 36(8): 6-15. (in Chinese with English abstract) | |
| [16] | SABATINI D M. Twenty-five years of mTOR: uncovering the link from nutrients to growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(45): 11818-11825. |
| [17] | 初芹, 李东, 侯诗宇, 等. 基于DNA池测序法筛选奶牛高信息量SNP标记的可行性[J]. 遗传, 2014, 36(7): 691-696. |
| CHU Q, LI D, HOU S Y, et al. Direct sequencing of DNA pooling for screening highly informative SNPs in dairy cattle[J]. Hereditas, 2014, 36(7): 691-696. (in Chinese with English abstract) | |
| [18] | 曾艳玲, 谭晓风, 曾晓峰. 单核苷酸多态性的检测及其在林木育种中的应用[J]. 经济林研究, 2009, 27(1): 102-105. |
| ZENG Y L, TAN X F, ZENG X F. Single nucleotide polymorphism genotyping and its application in woods breeding[J]. Nonwood Forest Research, 2009, 27(1): 102-105. (in Chinese with English abstract) | |
| [19] | 孙涛. 基因突变对蛋白质影响的几种不同情况[J]. 中学生物教学, 2011(7): 41-42. |
| SUN T. Several different situations in which genetic mutations affect proteins[J]. Biology Teaching in Middle Schools, 2011(7): 41-42. (in Chinese) | |
| [20] | 贾浩, 张小白, 宋晓峰. 人类胞内蛋白半衰期与其亚细胞定位的相关性研究[J]. 计算机与应用化学, 2011, 28(4): 411-414. |
| JIA H, ZHANG X B, SONG X F. Relationship between intracellular protein half-life and subcellular localization in human cells[J]. Computers and Applied Chemistry, 2011, 28(4): 411-414. (in Chinese with English abstract) |
| [1] | DI Yancui, JI Zelin, WANG Yuanyuan, LOU Shihao, ZHANG Tao, GUO Zhixin, SHEN Shunshan, PIAO Fengzhi, DU Nanshan, DONG Xiaoxing, DONG Han. Identification, subcellular localization and expression analysis of tomato SlMYB52 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 808-819. |
| [2] | ZHANG Meiying, MO Qian, QI Xiushuang, TONG Ningning, KONG Fan, LIU Zheng’an, LYU Changping, PENG Liping. Cloning and expression analysis of peony PoLPAT2 gene [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 321-328. |
| [3] | CUI Bowen, ZHANG Siyi, WANG Jialing, WANG Jinghong, LIN Jixiang, YANG Qingjie. Bioinformatics analysis and drought-tolerant gene mining of WRKY family members in Carex siderosticta [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2087-2103. |
| [4] | JIANG Wenjun, SHU Hongsuo, CHEN Zhengman, REN Dianting, YANG Dang, TIAN Rongjiang, DU Zhaokui. Cloning, expression, and bioinformatics analysis of KoWRKY43 gene in Kandelia obovata [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1832-1843. |
| [5] | ZHU Yanyu, YU Wentao, GAO Shuilian, LYU Shuiyuan, WANG Pan, JIN Wanmin, GUI Wenjing, LIN Yi, YE Naixing. The diversity of tea germplasm resources and genetic relationship of ‘Tieguanyin’-derived varieties in Anxi, Fujian, China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1591-1601. |
| [6] | XIANG Jin, WANG Chunyuan, WU Yan, TAN Yuancheng, YANG Suan, ZHANG Yiyu. CRISP3 gene SNP identification and its impact on reproductive traits in Kela pigs [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1270-1278. |
| [7] | LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799. |
| [8] | ZHANG Luhe, WANG Duofeng, ZHANG De, ZHANG Guangzhong, ZHAO Tong, LYU Binyan, ZHANG Yangjun, LI Yi. Identification and bioinformatics analysis of novel-miR16 target gene ZjTCP4 in Chinese jujube [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 534-543. |
| [9] | YUAN Ye, LIU Rui, WANG Lingyun, SHEN Meng, YE Xuelian, QUAN Xinhua, WANG Ruisen, YAO Xiangtan. Genetic diversity analysis of Trapa L. cultivars in Jiangsu and Zhejiang Provinces using SLAF-seq [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1773-1781. |
| [10] | ZHANG Li, WANG Yuanyuan, WANG Rui, LIU Lixia. Cloning sequencing and bioinformatics analysis of DRA gene of yak [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1564-1570. |
| [11] | PANG Xueqing, TANG Shi, ZENG Hongmei, ZHAO Wei, WANG Yin, LUO Yan, YAO Xueping, REN Meishen, REN Yongjun, YANG Zexiao. Cloning and analysis of RdRp gene in two strains of GI.1 and GI.2 RHDV [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1286-1296. |
| [12] | SONG Yaping, LEI Zhaoxiong, ZHAO Yi’ang, JIANG Chao, WANG Xingping, LUORENG Zhuoma, MA Yun, WEI Dawei. Cloning of CDS region of bovine FoxO1 gene and analysing expression pattern during adipocyte differentiation [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1016-1027. |
| [13] | YAO Yanlin, MA Li, LIU Lijun, PU Yuanyuan, LI Xuecai, WANG Wangtian, FANG Yan, SUN Wancang, WU Junyan. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L. [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. |
| [14] | YAN Cunyao, JIA Kai, YAN Huizhuan, GAO Jie. Cloning, expression and bioinformatics analysis of BrrLOX7 gene in turnip [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 831-840. |
| [15] | HAN Xueyang, LIU Ning, WEN Xin, WEI Jicheng, REN Ruyi, HAO Aiping. Prediction and bioinformatics analysis of target genes of plant development-related miR828 gene family [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 515-522. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||