Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (8): 1832-1843.DOI: 10.3969/j.issn.1004-1524.20231173
• Horticultural Science • Previous Articles Next Articles
JIANG Wenjun1(), SHU Hongsuo2, CHEN Zhengman3, REN Dianting2, YANG Dang1,4, TIAN Rongjiang1, DU Zhaokui1,4,*(
)
Received:
2023-10-09
Online:
2024-08-25
Published:
2024-09-06
Contact:
DU Zhaokui
CLC Number:
JIANG Wenjun, SHU Hongsuo, CHEN Zhengman, REN Dianting, YANG Dang, TIAN Rongjiang, DU Zhaokui. Cloning, expression, and bioinformatics analysis of KoWRKY43 gene in Kandelia obovata[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1832-1843.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231173
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 用途 Purpose |
---|---|---|---|
KoWRKY43 | ATGGATGAGACCACGCCGGA | CTAAAATATCTCATGATAAC | 基因扩增Gene amplification |
KoWRKY43 | CACCGATCCAGCAGATTCCC | ACAAGAAGGACGAAAGCGGA | 实时荧光定量PCR Real-time fluorogenic quantitative PCR |
18S rRNA | GGGGCTCGAAGACGATCAGA | TTAAGCCGCAGGCTCCACTC | 内参基因Internal reference gene |
Table 1 Information of primers
基因 Gene | 上游引物 Forward primer(5'→3') | 下游引物 Reverse primer(5'→3') | 用途 Purpose |
---|---|---|---|
KoWRKY43 | ATGGATGAGACCACGCCGGA | CTAAAATATCTCATGATAAC | 基因扩增Gene amplification |
KoWRKY43 | CACCGATCCAGCAGATTCCC | ACAAGAAGGACGAAAGCGGA | 实时荧光定量PCR Real-time fluorogenic quantitative PCR |
18S rRNA | GGGGCTCGAAGACGATCAGA | TTAAGCCGCAGGCTCCACTC | 内参基因Internal reference gene |
Fig.3 Coding sequence and predicted amino acid sequence of KoWRKY43 gene Red and blue underlines represent the N-terminal WRKYGQK and C-terminal CX5CX23HXH conserved sequences of KoWRKY43 protein, respectively.
氨基酸种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% | 氨基酸的种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% |
---|---|---|---|---|---|
丙氨酸Alanine | 25 | 8.00 | 亮氨酸Leucine | 22 | 7.00 |
精氨酸Arginine | 20 | 6.40 | 赖氨酸Lysine | 26 | 8.30 |
天冬氨酰Asparagine | 15 | 4.80 | 甲硫氨酸Methionine | 7 | 2.20 |
天冬氨酸Aspartic acid | 15 | 4.80 | 苯丙氨酸Phenylalanine | 8 | 2.60 |
半胱氨酸Cysteine | 7 | 2.20 | 脯氨酸Proline | 22 | 7.00 |
谷氨酰胺Glutamine | 12 | 3.80 | 丝氨酸Serine | 43 | 13.70 |
谷氨酸Glutamic acid | 12 | 3.80 | 苏氨酸Threonine | 13 | 4.20 |
甘氨酸Glycine | 15 | .80 | 色氨酸Tryptophan | 1 | 0.30 |
组氨酸Histidine | 6 | 1.90 | 酪氨酸Tyrosine | 8 | 2.60 |
异亮氨酸Isoleucine | 13 | 4.20 | 缬氨酸Valine | 23 | 7.30 |
Table 2 Amino acid composition of KoWRKY43 protein
氨基酸种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% | 氨基酸的种类 Type of amino acid | 数量 Quantity | 占氨基酸总量的百分比 Percent of total amino acids/% |
---|---|---|---|---|---|
丙氨酸Alanine | 25 | 8.00 | 亮氨酸Leucine | 22 | 7.00 |
精氨酸Arginine | 20 | 6.40 | 赖氨酸Lysine | 26 | 8.30 |
天冬氨酰Asparagine | 15 | 4.80 | 甲硫氨酸Methionine | 7 | 2.20 |
天冬氨酸Aspartic acid | 15 | 4.80 | 苯丙氨酸Phenylalanine | 8 | 2.60 |
半胱氨酸Cysteine | 7 | 2.20 | 脯氨酸Proline | 22 | 7.00 |
谷氨酰胺Glutamine | 12 | 3.80 | 丝氨酸Serine | 43 | 13.70 |
谷氨酸Glutamic acid | 12 | 3.80 | 苏氨酸Threonine | 13 | 4.20 |
甘氨酸Glycine | 15 | .80 | 色氨酸Tryptophan | 1 | 0.30 |
组氨酸Histidine | 6 | 1.90 | 酪氨酸Tyrosine | 8 | 2.60 |
异亮氨酸Isoleucine | 13 | 4.20 | 缬氨酸Valine | 23 | 7.30 |
Fig.10 Prediction of cis-acting elements in the upstream 2 000 bp promoter region of Kandelia obovata KoWRKY43 gene ARE, Antioxidant responsive element; ABRE, ABA-responsive element; MBS, MYB binding site; AuxRR, Auxin-responsive element.
Fig.11 Relative expression levels of KoWRKY43 gene in different organs of Kandelia obovata The expression level in leaf is defined as a relative standard for the expression of other organs, with error bars indicating standard error, and different lowercase letters indicate significant differences among organs at the 0.05 level.
Fig.12 Expression changes of KoWRKY43 gene in the leaf of Kandelia obovata under stress conditions of NaCl, salicylic acid, abscisic acid, and methyl jasmonate A, 200 mmol·L-1 NaCl stress; B, 100 μmol·L-1 salicylic acid stress; C, 100 μmol·L-1 abscisic acid stress; D, 100 μmol·L-1 methyl jasmonate stress. The expression level at 0 h is defined as a relative standard for other treatment times, defined as 1, error bars represent standard errors, and bars without the same lowercase letters indicate significant differences in expression levels at different treatment times at the 0.05 level.
[1] | SONG H, SUN W H, YANG G F, et al. WRKY transcription factors in legumes[J]. BMC Plant Biology, 2018, 18(1): 243. |
[2] | ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Molecular & General Genetics, 1994, 244(6): 563-571. |
[3] | WU K L, GUO Z J, WANG H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Research, 2005, 12(1): 9-26. |
[4] | 仇玉萍, 荆邵娟, 付坚, 等. 13个水稻WRKY基因的克隆及其表达谱分析[J]. 科学通报, 2004, 49(18): 1860-1869. |
QIU Y P, JING S J, FU J, et al. Cloning and expression profile analysis of 13 rice WRKY genes[J]. Chinese Science Bulletin, 2004, 49(18): 1860-1869. (in Chinese with English abstract) | |
[5] | YIN G J, XU H L, XIAO S Y, et al. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups[J]. BMC Plant Biology, 2013, 13: 148. |
[6] | WEI K F, CHEN J, CHEN Y F, et al. Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize[J]. DNA Research, 2012, 19(2): 153-164. |
[7] | RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. |
[8] | JIANG J J, MA S H, YE N H, et al. WRKY transcription factors in plant responses to stresses[J]. Journal of Integrative Plant Biology, 2017, 59(2): 86-101. |
[9] | 林鹏. 中国红树林研究进展[J]. 厦门大学学报(自然科学版), 2001, 40(2): 592-603. |
LIN P. A review on the mangrove research in China[J]. Journal of Xiamen University(Natural Science), 2001, 40(2): 592-603. (in Chinese with English abstract) | |
[10] | 廖宝文, 张乔民. 中国红树林的分布、面积和树种组成[J]. 湿地科学, 2014, 12(4): 435-440. |
LIAO B W, ZHANG Q M. Area, distribution and species composition of mangroves in China[J]. Wetland Science, 2014, 12(4): 435-440. (in Chinese with English abstract) | |
[11] | 范航清, 王文卿. 中国红树林保育的若干重要问题[J]. 厦门大学学报(自然科学版), 2017, 56(3): 323-330. |
FAN H Q, WANG W Q. Some thematic issues for mangrove conservation in China[J]. Journal of Xiamen University (Natural Science), 2017, 56(3): 323-330. (in Chinese with English abstract) | |
[12] | 陈鹭真, 王文卿, 张宜辉, 等. 2008年南方低温对我国红树植物的破坏作用[J]. 植物生态学报, 2010, 34(2): 186-194. |
CHEN L Z, WANG W Q, ZHANG Y H, et al. Damage to mangroves from extreme cold in early 2008 in southern China[J]. Chinese Journal of Plant Ecology, 2010, 34(2): 186-194. (in Chinese with English abstract) | |
[13] | 陈秋夏, 杨升, 王金旺, 等. 浙江红树林发展历程及探讨[J]. 浙江农业科学, 2019, 60(7): 1177-1181. |
CHEN Q X, YANG S, WANG J W, et al. Development history and discussion of mangrove forest in Zhejiang Province[J]. Journal of Zhejiang Agricultural Sciences, 2019, 60(7): 1177-1181. (in Chinese) | |
[14] | DU Z K, YOU S X, YANG D, et al. Comprehensive analysis of the NAC transcription factor gene family in Kandelia obovata reveals potential members related to chilling tolerance[J]. Frontiers in Plant Science, 2022, 13: 1048822. |
[15] | HOANG X L T, NHI D N H, THU N B A, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses[J]. Current Genomics, 2017, 18(6): 483-497. |
[16] | LIU W, LIANG X Q, CAI W J, et al. Isolation and functional analysis of VvWRKY28, a Vitis vinifera WRKY transcription factor gene, with functions in tolerance to cold and salt stress in transgenic Arabidopsis thaliana[J]. International Journal of Molecular Sciences, 2022, 23(21): 13418. |
[17] | DAI Z G, WEI M Y, ZHANG B X, et al. VuWRKY, a group I WRKY gene from Vaccinium uliginosum, confers tolerance to cold and salt stresses in plant[J]. Plant Cell, Tissue and Organ Culture, 2021, 147(1): 157-168. |
[18] | ZHU L, LI S L, OUYANG M Z, et al. Overexpression of watermelon ClWRKY20 in transgenic Arabidopsis improves salt and low-temperature tolerance[J]. Scientia Horticulturae, 2022, 295: 110848. |
[19] | DU Z K, YOU S X, ZHAO X, et al. Genome-wide identification of WRKY genes and their responses to chilling stress in Kandelia obovata[J]. Frontiers in Genetics, 2022, 13: 875316. |
[20] | LI W X, PANG S Y, LU Z G, et al. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants[J]. Plants, 2020, 9(11): 1515. |
[21] | BAKSHI M, OELMÜLLER R. WRKY transcription factors: jack of many trades in plants[J]. Plant Signaling & Behavior, 2014, 9(2): e27700. |
[22] | CHEN X J, LI C, WANG H, et al. WRKY transcription factors: evolution, binding, and action[J]. Phytopathology Research, 2019, 1(1): 13. |
[23] | HUANG Z, LIU L, JIAN L L, et al. Heterologous expression of MfWRKY7 of resurrection plant Myrothamnus flabellifolia enhances salt and drought tolerance in Arabidopsis[J]. International Journal of Molecular Sciences, 2022, 23(14): 7890. |
[24] | 张文静, 李思, 刘杨, 等. 中间锦鸡儿WRKY15基因克隆及其生物信息学分析[J]. 中国草地学报, 2019, 41(4): 23-31. |
ZHANG W J, LI S, LIU Y, et al. Cloning and bioinformatics analysis of CiWRKY15 gene in Caragana intermedia[J]. Chinese Journal of Grassland, 2019, 41(4): 23-31. (in Chinese with English abstract) | |
[25] | 张旭, 凌辉, 刘峰, 等. 一个甘蔗Ⅱd类WRKY转录因子基因的克隆和表达分析[J]. 中国农业科学, 2018, 51(23): 4409-4423. |
ZHANG X, LING H, LIU F, et al. Cloning and expression analysis of a Ⅱd sub-group WRKY transcription factor gene from sugarcane[J]. Scientia Agricultura Sinica, 2018, 51(23): 4409-4423. (in Chinese with English abstract) | |
[26] | CHEN X, CHEN R H, WANG Y F, et al. Genome-wide identification of WRKY transcription factors in Chinese jujube (Ziziphus jujuba Mill.) and their involvement in fruit developing, ripening, and abiotic stress[J]. Genes, 2019, 10(5): 360. |
[27] | GAO Y F, LIU J K, YANG F M, et al. The WRKY transcription factor WRKY8 promotes resistance to pathogen infection and mediates drought and salt stress tolerance in Solanum lycopersicum[J]. Physiologia Plantarum, 2020, 168(1): 98-117. |
[28] | CAI R H, ZHAO Y, WANG Y F, et al. Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice[J]. Plant Cell, Tissue and Organ Culture, 2014, 119(3): 565-577. |
[29] | 窦玲玲, 李光雷, 庞朝友, 等. 棉花转录因子GhWRKY11的克隆及功能分析[J]. 农业生物技术学报, 2016, 24(5): 625-636. |
DOU L L, LI G L, PANG C Y, et al. Cloning and function analysis of GhWRKY11 in cotton (Gossypium hirsutum)[J]. Journal of Agricultural Biotechnology, 2016, 24(5): 625-636. (in Chinese with English abstract) | |
[30] | 郭芬, 孟小庆, 刘思媛, 等. 甘薯WRKY转录因子编码基因IbWRKY53L的生物信息学及表达特性分析[J]. 江苏师范大学学报(自然科学版), 2022, 40(4): 22-27. |
GUO F, MENG X Q, LIU S Y, et al. Bioinformatics and expression characteristics of the sweetpotato WRKY transcription factor encoding gene IbWRKY53L[J]. Journal of Jiangsu Normal University(Natural Science Edition), 2022, 40(4): 22-27. (in Chinese with English abstract) | |
[31] | LI H L, GUO D, YANG Z P, et al. Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis[J]. Genomics, 2014, 104(1): 14-23. |
[32] | GU L J, WEI H L, WANG H T, et al. Characterization and functional analysis of GhWRKY42, a group Ⅱd WRKY gene, in upland cotton (Gossypium hirsutum L.)[J]. BMC Genetics, 2018, 19(1): 48. |
[33] | RAINERI J, RIBICHICH K F, CHAN R L. The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty[J]. Plant Cell Reports, 2015, 34(12): 2065-2080. |
[1] | SUN Peiyuan, RAN Bin, WANG Jiarui, LI Hongyou. Cloning and expression analysis of Fagopyrum tataricum FtDELLA gene [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1709-1718. |
[2] | ZHU Guishuang, LI Yanxiao, ZHANG Anning, SUN Haonan, XU Xingyuan, LI Zhigang, XIANG Dianjun. Identification of RcGeBP transcription factor and cloning and expression analysis of RcGeBP2 gene in castor [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1731-1740. |
[3] | ZHU Yan, DING Lan, CHEN Yiqian, HUANG Xiujing, JIANG Weiwei, CHEN Donghong. Identification and functional analysis of CLE gene family in Dendrobium officinale Kimura et Migo [J]. Acta Agriculturae Zhejiangensis, 2024, 36(7): 1583-1590. |
[4] | LI Yaping, JIN Fulai, HUANG Zonggui, ZHANG Tao, DUAN Xiaojing, JIANG Wu, TAO Zhengming, CHEN Jiadong. Identification and expression pattern analysis of glycoside hydrolase GH3 gene family in Dendrobium officinale [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 790-799. |
[5] | CHEN Shangyu, SONG Xuewei, QI Zhenyu, ZHOU Yanhong, YU Jingquan, XIA Xiaojian. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690-703. |
[6] | SONG Chuansheng, KANG Xiaofei, FAN Qingzhong, WANG Jungang, SHI Xue, ZHANG Ziru, TAN Qingqing, ZENG Xiaojiao, LIU Fang, LI Yingsai, HOU Changyue. Cloning, sequence analysis, prokaryotic expression of thymidine kinase from jujube witches’-broom phytoplasma [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1763-1772. |
[7] | WANG Zhihao, XI Xinyan, WANG Li, YANG Shuna, GAO Zhiyuan, YIN Yiming, ZOU Hui, JIA Huijuan. Flower bud formation and physiological biochemistry characteristics of Hongmeiren citrus hybrid in northern Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1571-1581. |
[8] | XU Hongxia, LI Xiaoying, GE Hang, ZHU Qixuan, CHEN Junwei. Transcriptome-based analysis of the role of endogenous hormones in regulating flower development in loquat (Eriobotrya japonica Lindl.) [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1648-1661. |
[9] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[10] | ZHU Yan, WEI Jia, XU Zilong, LIN Tianbao, YANG Sheng, LIU Yan, LYU Zhiqiang, LIU Peigang. Effects of growth promoting hormones on physiological and biochemical indexes of mulberry leaves during senescence [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1278-1285. |
[11] | PANG Xueqing, TANG Shi, ZENG Hongmei, ZHAO Wei, WANG Yin, LUO Yan, YAO Xueping, REN Meishen, REN Yongjun, YANG Zexiao. Cloning and analysis of RdRp gene in two strains of GI.1 and GI.2 RHDV [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1286-1296. |
[12] | XIN Xiaoyue, LIU Peng. Research progress on molecular mechanisms of seed dormancy and germination regulated by plant hormones [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1485-1496. |
[13] | SONG Yaping, LEI Zhaoxiong, ZHAO Yi’ang, JIANG Chao, WANG Xingping, LUORENG Zhuoma, MA Yun, WEI Dawei. Cloning of CDS region of bovine FoxO1 gene and analysing expression pattern during adipocyte differentiation [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1016-1027. |
[14] | YAO Yanlin, MA Li, LIU Lijun, PU Yuanyuan, LI Xuecai, WANG Wangtian, FANG Yan, SUN Wancang, WU Junyan. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L. [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. |
[15] | XU Jinming, CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi. Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 789-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||