Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (6): 1485-1496.DOI: 10.3969/j.issn.1004-1524.2023.06.25
• Review • Previous Articles
Received:
2022-07-22
Online:
2023-06-25
Published:
2023-07-04
CLC Number:
XIN Xiaoyue, LIU Peng. Research progress on molecular mechanisms of seed dormancy and germination regulated by plant hormones[J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1485-1496.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.06.25
[1] | HOLDSWORTH M J, BENTSINK L, SOPPE W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. The New Phytologist, 2008, 179(1): 33-54. |
[2] | SHU K, LIU X D, XIE Q, et al. Two faces of one seed: hormonal regulation of dormancy and germination[J]. Molecular Plant, 2016, 9(1): 34-45. |
[3] | FINKELSTEIN R, REEVES W, ARIIZUMI T, et al. Molecular aspects of seed dormancy[J]. Annual Review of Plant Biology, 2008, 59: 387-415. |
[4] | SIMSEK S, OHM J B, LU H Y, et al. Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat[J]. Journal of the Science of Food and Agriculture, 2014, 94(2): 205-212. |
[5] | BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 17042-17047. |
[6] | NÉE G, KRAMER K, NAKABAYASHI K, et al. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy[J]. Nature Communications, 2017, 8: 72. |
[7] | CARRILLO-BARRAL N, DEL CARMEN RODRÍGUEZ-GACIO M, MATILLA A J. Delay of germination-1 (DOG1): a key to understanding seed dormancy[J]. Plants, 2020, 9(4): 480. |
[8] | MATILLA A J. Seed dormancy: molecular control of its induction and alleviation[J]. Plants, 2020, 9(10): 1402. |
[9] | BEWLEY J D, NONOGAKI H. Seed maturation and germination[M]// Reference Module in Life Sciences. Amsterdam: Elsevier, 2017. |
[10] | DEKKERS B J W, HE H Z, HANSON J, et al. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5(ABI5)expression and genetically interacts with ABI3 during Arabidopsis seed development[J]. The Plant Journal, 2016, 85(4): 451-465. |
[11] | GIRAUDAT J, HAUGE B M, VALON C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning[J]. The Plant Cell, 1992, 4(10): 1251-1261. |
[12] | MEINKE D W. A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons[J]. Science, 1992, 258(5088): 1647-1650. |
[13] | KEITH K, KRAML M, DENGLER N G, et al. Fusca3: a heterochronic mutation affecting late embryo development in Arabidopsis[J]. The Plant Cell, 1994: 589-600. |
[14] | WEST M, YEE K M, DANAO J, et al. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and Cotyledon identity in Arabidopsis[J]. The Plant Cell, 1994: 1731-1745. |
[15] | LOTAN T, OHTO M A, YEE K M, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells[J]. Cell, 1998, 93(7): 1195-1205. |
[16] | STONE S L, KWONG L W, YEE K M, et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(20): 11806-11811. |
[17] | LUERßEN H, KIRIK V, HERRMANN P, et al. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation inArabidopsis thaliana[J]. The Plant Journal, 1998, 15(6): 755-764. |
[18] | RIKIISHI K, MAEKAWA M. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.)[J]. PLoS One, 2014, 9(9): e107618. |
[19] | CARBONERO P, IGLESIAS-FERNÁNDEZ R, VICENTE-CARBAJOSA J. The AFL subfamily of B3 transcription factors: evolution and function in angiosperm seeds[J]. Journal of Experimental Botany, 2017, 68(4): 871-880. |
[20] | PELLETIER J M, KWONG R W, PARK S, et al. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(32): E6710-E6719. |
[21] | BRYANT F M, HUGHES D, HASSANI-PAK K, et al. Basic leucine zipper transcription factor 67 transactivates DELAY OF GERMINATION1 to establish primary seed dormancy in Arabidopsis[J]. The Plant Cell, 2019, 31(6): 1276-1288. |
[22] | BREEZE E. Letting sleeping DOGs lie: regulation of DOG1 during seed dormancy[J]. The Plant Cell, 2019, 31(6): 1218-1219. |
[23] | NAKABAYASHI K, BARTSCH M, XIANG Y, et al. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds[J]. The Plant Cell, 2012, 24(7): 2826-2838. |
[24] | WANG F F, PERRY S E. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development[J]. Plant Physiology, 2013, 161(3): 1251-1264. |
[25] | MÖNKE G, ALTSCHMIED L, TEWES A, et al. Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA[J]. Planta, 2004, 219(1): 158-166. |
[26] | LIU Y X, KOORNNEEF M, SOPPE W J J. The absence of histone H2B monoubiquitination in the Arabidopsis hub1(RDO4) mutant reveals a role for chromatin remodeling in seed dormancy[J]. The Plant Cell, 2007, 19(2): 433-444. |
[27] | LIU Y X, GEYER R, VAN ZANTEN M, et al. Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy[J]. PLoS One, 2011, 6(7): e22241. |
[28] | ZHAO M L, YANG S G, LIU X C, et al. Arabidopsis histone demethylases LDL1 and LDL2 control primary seed dormancy by regulating DELAY OF GERMINATION 1 and ABA signaling-related genes[J]. Frontiers in Plant Science, 2015, 6: 159. |
[29] | ZHENG J A, CHEN F Y, WANG Z, et al. A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy[J]. New Phytologist, 2012, 193(3): 605-616. |
[30] | SANO N, MARION-POLL A. ABA metabolism and homeostasis in seed dormancy and germination[J]. International Journal of Molecular Sciences, 2021, 22(10): 5069. |
[31] | CHAUFFOUR F, BAILLY M, PERREAU F, et al. Multi-omics analysis reveals sequential roles for ABA during seed maturation[J]. Plant Physiology, 2019, 180(2): 1198-1218. |
[32] | IUCHI S, KOBAYASHI M, TAJI T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal, 2001, 27(4): 325-333. |
[33] | KUSHIRO T, OKAMOTO M, NAKABAYASHI K, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism[J]. The EMBO Journal, 2004, 23(7): 1647-1656. |
[34] | SAITO S, HIRAI N, MATSUMOTO C, et al. Arabidopsis CYP707As encode (+)-abscisic acid 8’-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid[J]. Plant Physiology, 2004, 134(4): 1439-1449. |
[35] | OKAMOTO M, KUWAHARA A, SEO M, et al. CYP707A1 and CYP707A2, which encode abscisic acid 8’-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis[J]. Plant Physiology, 2006, 141(1): 97-107. |
[36] | CUTLER S R, RODRIGUEZ P L, FINKELSTEIN R R, et al. Abscisic acid: emergence of a core signaling network[J]. Annual Review of Plant Biology, 2010, 61: 651-679. |
[37] | PARK S Y, FUNG P, NISHIMURA N, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins[J]. Science, 2009, 324(5930): 1068-1071. |
[38] | CHEN K, LI G J, BRESSAN R A, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 2020, 62(1): 25-54. |
[39] | LEUNG J, MERLOT S, GIRAUDAT J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction[J]. The Plant Cell, 1997, 9(5): 759-771. |
[40] | FINKELSTEIN R R. Maternal effects govern variable dominance of two abscisic acid response mutations in Arabidopsis thaliana[J]. Plant Physiology, 1994, 105(4): 1203-1208. |
[41] | KIM W, LEE Y, PARK J, et al. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis[J]. Plant and Cell Physiology, 2013, 54(4): 555-572. |
[42] | XIANG Y, SONG B, NéE G, et al. Sequence polymorphisms at the REDUCED DORMANCY5 pseudophosphatase underlie natural variation in Arabidopsis dormancy[J]. Plant Physiology, 2016, 171(4): 2659-2670. |
[43] | XIANG Y, NAKABAYASHI K, DING J, et al. Reduced Dormancy 5 encodes a protein phosphatase 2C that is required for seed dormancy in Arabidopsis[J]. The Plant Cell, 2014, 26(11): 4362-4375. |
[44] | FUJII H, ZHU J K. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8380-8385. |
[45] | NAKASHIMA K, FUJITA Y, KANAMORI N, et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy[J]. Plant and Cell Physiology, 2009, 50(7): 1345-1363. |
[46] | BENTSINK L, KOORNNEEF M. Seed dormancy and germination[J]. The Arabidopsis Book, 2008, 6: e0119. |
[47] | KOORNNEEF M, REULING G, KARSSEN C M. The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana[J]. Physiologia Plantarum, 1984, 61(3): 377-383. |
[48] | BARRERO J M, MILLAR A A, GRIFFITHS J, et al. Gene expression profiling identifies two regulatory genes controlling dormancy and ABA sensitivity in Arabidopsis seeds[J]. The Plant Journal, 2010, 61(4): 611-622. |
[49] | DING Z J, YAN J Y, LI G X, et al. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI levels not downstream of ABA[J]. The Plant Journal, 2014, 79(5): 810-823. |
[50] | SUGIMOTO K, TAKEUCHI Y, EBANA K, et al. Molecular cloning of Sdr4, a regulator involved in seed dormancy and domestication of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(13): 5792-5797. |
[51] | LIU F, ZHANG H, DING L, et al. Reversal of RDO51, a homolog of rice seed Dormancy4, interacts with bHLH57 and controls ABA biosynthesis and seed dormancy in Arabidopsis[J]. The Plant Cell, 2020, 32(6): 1933-1948. |
[52] | SHU K, ZHOU W G, YANG W Y. APETALA 2-domain-containing transcription factors: focusing on abscisic acid and gibberellins antagonism[J]. New Phytologist, 2018, 217(3): 977-983. |
[53] | SHU K, ZHANG H W, WANG S F, et al. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis[J]. PLoS Genetics, 2013, 9(6): e1003577. |
[54] | LEE H G, LEE K, SEO P J. The Arabidopsis MYB96 transcription factor plays a role in seed dormancy[J]. Plant Molecular Biology, 2015, 87(4): 371-381. |
[55] | KONG D D, JU C L, PARIHAR A, et al. Arabidopsis glutamate receptor homolog 3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination[J]. Plant Physiology, 2015, 167(4): 1630-1642. |
[56] | VAISTIJ F E, GAN Y B, PENFIELD S, et al. Differential control of seed primary dormancy in Arabidopsis ecotypes by the transcription factor SPATULA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10866-10871. |
[57] | COLLIN A, DASZKOWSKA-GOLEC A, SZAREJKO I. Updates on the role of abscisic acid insensitive 5 (ABI5) and abscisic acid-responsive element binding factors (ABFs) in ABA signaling in different developmental stages in plants[J]. Cells, 2021, 10(8): 1996. |
[58] | SU M Y, HUANG G, ZHANG Q, et al. The LEA protein, ABR, is regulated by ABI5 and involved in dark-induced leaf senescence in Arabidopsis thaliana[J]. Plant Science, 2016, 247: 93-103. |
[59] | XU D Q, LI J G, GANGAPPA S N, et al. Convergence of light and ABA signaling on the ABI5 promoter[J]. PLoS Genetics, 2014, 10(2): e1004197. |
[60] | BHAGAT P K, VERMA D, SHARMA D, et al. HY5 and ABI5 transcription factors physically interact to fine tune light and ABA signaling in Arabidopsis[J]. Plant Molecular Biology, 2021, 107(1/2): 117-127. |
[61] | REYMOND M C, BRUNOUD G, CHAUVET A, et al. A light-regulated genetic module was recruited to carpel development in Arabidopsis following a structural change to SPATULA[J]. The Plant Cell, 2012, 24(7): 2812-2825. |
[62] | OH E, KANG H, YAMAGUCHI S, et al. Genome-wide analysis of genes targeted by phytochrome interacting factor 3-like 5 during seed germination in Arabidopsis[J]. The Plant Cell, 2009, 21(2): 403-419. |
[63] | KOZAKI A, AOYANAGI T. Molecular aspects of seed development controlled by gibberellins and abscisic acids[J]. International Journal of Molecular Sciences, 2022, 23(3): 1876. |
[64] | KUCERA B, COHN M A, LEUBNER-METZGER G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Science Research, 2005, 15(4): 281-307. |
[65] | GIMENO-GILLES C, LELIÈVRE E, VIAU L, et al. ABA-mediated inhibition of germination is related to the inhibition of genes encoding cell-wall biosynthetic and architecture: modifying enzymes and structural proteins in Medicago truncatula embryo axis[J]. Molecular Plant, 2009, 2(1): 108-119. |
[66] | DEBEAUJON I, KOORNNEEF M. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid[J]. Plant Physiology, 2000, 122(2): 415-24. |
[67] | BEWLEY J D. Breaking down the walls:a role for endo-β-mannanase in release from seed dormancy?[J]. Trends in Plant Science, 1997, 2(12): 464-469. |
[68] | CHEN F, NONOGAKI H, BRADFORD K J. A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination[J]. Journal of Experimental Botany, 2002, 53(367): 215-223. |
[69] | OGAWA M, HANADA A, YAMAUCHI Y, et al. Gibberellin biosynthesis and response during Arabidopsis seed germination[J]. The Plant Cell, 2003, 15(7): 1591-1604. |
[70] | MITCHUM M G, YAMAGUCHI S, HANADA A, et al. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development[J]. The Plant Journal, 2006, 45(5): 804-818. |
[71] | YAMAGUCHI S, KAMIYA Y, SUN T P. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination[J]. The Plant Journal, 2002, 28(4): 443-453. |
[72] | YAMAUCHI Y, OGAWA M, KUWAHARA A, et al. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds[J]. The Plant Cell, 2004, 16(2): 367-378. |
[73] | NAKAJIMA M, SHIMADA A, TAKASHI Y, et al. Identification and characterization of Arabidopsis gibberellin receptors[J]. The Plant Journal, 2006, 46(5): 880-889. |
[74] | MCGINNIS K M, THOMAS S G, SOULE J D, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase[J]. The Plant Cell, 2003, 15(5): 1120-1130. |
[75] | SUN T P, GUBLER F. Molecular mechanism of gibberellin signaling in plants[J]. Annual Review of Plant Biology, 2004, 55: 197-223. |
[76] | LEE S, CHENG H, KING K E, et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition[J]. Genes & Development, 2002, 16(5): 646-658. |
[77] | PISKUREWICZ U, JIKUMARU Y, KINOSHITA N, et al. The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity[J]. The Plant Cell, 2008, 20(10): 2729-2745. |
[78] | GRIFFITHS J, MURASE K, RIEU I, et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. The Plant Cell, 2007, 18(12): 3399-3414. |
[79] | ARIIZUMI T, LAWRENCE P K, STEBER C M. The role of two F-box proteins, SLEEPY1 and SNEEZY, in Arabidopsis gibberellin signaling[J]. Plant Physiology, 2011, 155(2): 765-775. |
[80] | FUKAZAWA J, ITO T, KAMIYA Y, et al. Binding of GID1 to DELLAs promotes dissociation of GAF1 from DELLA in GA dependent manner[J]. Plant Signaling & Behavior, 2015, 10(10): e1052923. |
[81] | HAUVERMALE A L, ARIIZUMI T, STEBER C M. The roles of the GA receptors GID1a, GID1b, and GID1c in sly1-independent GA signaling[J]. Plant Signaling & Behavior, 2014, 9(2): e28030. |
[82] | TOHRU A, HAUVERMALE AMBER L, NELSON SVEN K, et al. Lifting della repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling[J]. Plant Physiology, 2013, 162(4): 2125-2139. |
[83] | VISHAL B, KUMAR P P. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid[J]. Frontiers in Plant Science, 2018, 9: 838. |
[84] | PARK J, KIM Y S, KIM S G, et al. Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis[J]. Plant Physiology, 2011, 156(2): 537-549. |
[85] | RAMAIH S, GUEDIRA M, PAULSEN G M. Relationship of indoleacetic acid and tryptophan to dormancy and preharvest sprouting of wheat[J]. Functional Plant Biology, 2003, 30(9): 939. |
[86] | LIU X D, ZHANG H, ZHAO Y, et al. Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(38): 15485-15490. |
[87] | CORBINEAU F, XIA Q, BAILLY C, et al. Ethylene, a key factor in the regulation of seed dormancy[J]. Frontiers in Plant Science, 2014, 5: 539. |
[88] | HUANG Y F, LI H, HUTCHISON C E, et al. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis[J]. The Plant Journal, 2003, 33(2): 221-233. |
[89] | JING Y J, GUO Q A, LIN R C. The SNL-HDA19 histone deacetylase complex antagonizes HY5 activity to repress photomorphogenesis in Arabidopsis[J]. New Phytologist, 2021, 229(6): 3221-3236. |
[90] | WANG Z, CAO H, SUN Y Z, et al. Arabidopsis paired amphipathic helix proteins SNL1 and SNL2 redundantly regulate primary seed dormancy via abscisic acid-ethylene antagonism mediated by histone deacetylation[J]. The Plant Cell, 2013, 25(1): 149-166. |
[91] | WILSON R L, KIM H, BAKSHI A, et al. The ethylene receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 have contrasting roles in seed germination of Arabidopsis during salt stress[J]. Plant Physiology, 2014, 165(3): 1353-1366. |
[92] | STEBER C M, MCCOURT P. A role for brassinosteroids in germination in Arabidopsis[J]. Plant Physiology, 2001, 125(2): 763-769. |
[93] | XI W Y, YU H. MOTHER OF FT AND TFL1 regulates seed germination and fertility relevant to the brassinosteroid signaling pathway[J]. Plant Signaling & Behavior, 2010, 5(10): 1315-1317. |
[94] | LI J M, NAM K H, VAFEADOS D, et al. BIN2, a new brassinosteroid-insensitive locus in Arabidopsis[J]. Plant Physiology, 2001, 127(1): 14-22. |
[95] | HU Y R, YU D Q. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis[J]. The Plant Cell, 2014, 26(11): 4394-4408. |
[96] | YANG X R, BAI Y, SHANG J X, et al. The antagonistic regulation of abscisic acid-inhibited root growth by brassinosteroids is partially mediated via direct suppression of ABSCISIC ACID INSENSITIVE 5 expression by brassinazole resistant 1[J]. Plant, Cell & Environment, 2016, 39(9): 1994-2003. |
[97] | ZHAO X A, DOU L R, GONG Z Z, et al. BES 1 hinders ABSCISIC ACID INSENSITIVE 5 and promotes seed germination in Arabidopsis[J]. New Phytologist, 2019, 221(2): 908-918. |
[98] | WERNER T, SCHMÜLLING T. Cytokinin action in plant development[J]. Current Opinion in Plant Biology, 2009, 12(5): 527-538. |
[99] | GUAN C M, WANG X C, FENG J A, et al. Cytokinin antagonizes abscisic acid-mediated inhibition of Cotyledon greening by promoting the degradation of ABSCISIC ACID INSENSITIVE 5 protein in Arabidopsis[J]. Plant Physiology, 2014, 164(3): 1515-1526. |
[100] | WANG Y P, LI L, YE T T, et al. Cytokinin antagonizes ABA suppression to seed germination of Arabidopsis by downregulating ABI5 expression[J]. The Plant Journal, 2011, 68(2): 249-261. |
[101] | RIEFLER M, NOVAK O, STRNAD M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. The Plant Cell, 2006, 18(1): 40-54. |
[102] | XIE Z, ZHANG Z L, HANZLIK S, et al. Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene[J]. Plant Molecular Biology, 2007, 64(3): 293-303. |
[103] | LEE S M, KIM S G, PARK C M. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis[J]. New Phytologist, 2010, 188(2): 626-637. |
[104] | NAMBARA E, OKAMOTO M, TATEMATSU K, et al. Abscisic acid and the control of seed dormancy and germination[J]. Seed Science Research, 2010, 20(2): 55-67. |
[105] | JACOBSEN J V, BARRERO J M, HUGHES T, et al. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.)[J]. Planta, 2013, 238(1): 121-138. |
[106] | FERNÁNDEZ-ARBAIZAR A, REGALADO J J, LORENZO O. Isolation and characterization of novel mutant loci suppressing the ABA hypersensitivity of the Arabidopsis coronatine insensitive 1-16 (COI1-16) mutant during germination and seedling growth[J]. Plant and Cell Physiology, 2012, 53(1): 53-63. |
[107] | STANGA J P, SMITH S M, BRIGGS W R, et al. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis[J]. Plant Physiology, 2013, 163(1): 318-330. |
[108] | BUNSICK M, TOH S, WONG C, et al. SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga[J]. Nature Plants, 2020, 6(6): 646-652. |
[109] | DORONE Y, BOEYNAEMS S, FLORES E, et al. A prion-like protein regulator of seed germination undergoes hydration-dependent phase separation[J]. Cell, 2021, 184(16): 4284-4298. |
[110] | WANG M, LI W Z, FANG C, et al. Parallel selection on a dormancy gene during domestication of crops from multiple families[J]. Nature Genetics, 2018, 50(10): 1435-1441. |
[1] | ZHU Yan, WEI Jia, XU Zilong, LIN Tianbao, YANG Sheng, LIU Yan, LYU Zhiqiang, LIU Peigang. Effects of growth promoting hormones on physiological and biochemical indexes of mulberry leaves during senescence [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1278-1285. |
[2] | XU Jinming, CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi. Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 789-798. |
[3] | XU Yaozhao, ZENG Xiucun, WANG Zhenchao, DANG Shizhuo, LIU Yongjing. Effects of NaCl stress on seed germination and physiological characteristics of winter oilseed rape [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 499-508. |
[4] | CHEN Leran, ZHENG Jianbo, JIA Yongyi, CHI Meili, LI Fei, CHENG Shun, LIU Shili, LIU Yinuo, JIANG Wenping, GU Zhimin. Expression profiles of CHH2 gene in redclaw crayfish Cherax quadricarinatus and its role in ovarian development [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 33-40. |
[5] | JIN Baoxia, WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong. Effects of different hormone combinations on tomato in vitro regeneration and related gene expression [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1889-1900. |
[6] | LI Chunmei, WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai. Progress of long non-coding RNA regulating growth, development and response to stress in plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2066-2076. |
[7] | LIU Ru, DONG Changru, ZHANG Yiwen, QU Minghui, ZHANG Wei, SA Haiyang, CHEN Haiyan, YE Wenling, FAN Ting. Growth-promoting characteristics of Aspergillus niger TL-F2 and its effect on seed germination and cadmium content in seedlings of ryegrass under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 326-334. |
[8] | ZOU Wenxiong, WU Wei, GUAN Yajing, CAO Dongdong, BIAN Xiaobo, SHI Deyun, DING Liling. Research progress of regulation techniques of rice seed dormancy [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 369-379. |
[9] | YUE Jianhua, DONG Yan, LI Wenyang, LI Meng, ZHANG Yan. Effects of pH on physiological characters in somatic embryo induction stage of Agapanthus praecox [J]. , 2020, 32(8): 1405-1414. |
[10] | QIU Wenyi, WANG Shiyu, LI Xiaofang, XU Heng, ZHANG Hua, ZHU Ying, WANG Liangchao. Functions of plant MYB transcription factors in response to abiotic stress and plant hormones [J]. , 2020, 32(7): 1317-1328. |
[11] | YUAN Xilei, WANG Zhenshan, JIA Xiaoping, SANG Luman, LI Jianfeng, ZHANG Bo. Research advances on molecular mechanisms of photoperiod-regulation plant flowering and CCT gene family [J]. , 2020, 32(6): 1133-1140. |
[12] | WANG Feng, YE Jing, GAO Jingwen, WANG Qiang, YU Qiaogang, HE Xinhua, MA Junwei. Potassium alleviates inhibition of ammonium stress on wheat root [J]. , 2020, 32(11): 1923-1933. |
[13] | LIU Jialin, LIU Shili, JIANG Wenping, CHENG Shun, CHI Meili, ZHENG Jianbo, JIA Yongyi, ZHAO Jinliang, YIN Shaowu, GU Zhimin. Cloning and bioinformatics analysis of GH gene and its flanking region in Odontobutis potamophila [J]. , 2019, 31(9): 1461-1470. |
[14] | LI Mingyu, WANG Yan, LIANG Danni, YAO Yani, LAN Jian. Comprehensive evaluation of salt tolerance of 22 alfalfa germplasms at germination stage [J]. , 2019, 31(5): 746-755. |
[15] | DING Xiaoxue, WANG Bingliang, HAI Rui, HU Yuqing, MI Yuehua, YE Hongxia. Studies on germination characteristics of Solanum torvum seeds from various sources [J]. , 2019, 31(3): 420-427. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||