Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (9): 2066-2076.DOI: 10.3969/j.issn.1004-1524.2022.09.25
• Review • Previous Articles
LI Chunmei(), WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai(
)
Received:
2021-12-16
Online:
2022-09-25
Published:
2022-09-30
Contact:
LIU Kai
CLC Number:
LI Chunmei, WAN Xiaorong, GUAN Ziying, LAI Xiaofeng, LUO Kaiqing, LIU Kai. Progress of long non-coding RNA regulating growth, development and response to stress in plants[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2066-2076.
物种 Species | 基因 Gene name | 来源 Origin | 功能 Function | 作用机制 Mechanism |
---|---|---|---|---|
拟南芥 | COOLAIR[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
Arabidopsis | COLDAIR[ | incRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
thaliana | COLDWRAP[ | sense lncRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
MAS[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling | |
FLORE[ | NAT | 开花 Flowering | 抑制关联结构基因CDFs转录 Repressing transcription of the associated structural gene CDFs | |
npc48[ | lincRNA | 叶片发育、开花 Leaf development and flowering | — | |
asHSFB2a[ | NAT | 配子体发育Fertility | — | |
LINC-AP2[ | lincRNA | 花发育Flower development | — | |
AG-incRNA4[ | incRNA | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
1GOD/asDOG1[ | NAT | 种子休眠Seed dormancy | — | |
HID1(nc3020)[ | lincRNA | 光形态建成 Photomorphogenesis | 抑制非邻近基因PIF3转录 Repressing transcription of the non-neighboring structural gene PIF3 | |
ASCO-lncRNA(npc351)[ | lincRNA | 根发育 Root development | 靶基因的可变剪接 Alternative splicing on the target gene | |
APOLO (npc34)[ | lincRNA | 根发育Root development | 染色质重塑Chromatin remodeling | |
npc536[ | lincRNA | 应对盐胁迫Salt stress | — | |
DRIR[ | lincRNA | 应对干旱和盐胁迫 Drought and salt stress | — | |
SVALKA[ | lincNAT | 应对低温胁迫 Cold stress | 抑制邻近基因CBF1转录 Repressing transcription of the neighboring structural gene CBF1 | |
IPS1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
At4[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
TARs (TAR191/212/224/66)[ | lincRNA | 尖孢镰刀菌抗性 Fusarium oxysporum resistance | — | |
ELENA1[ | lincRNA | 细菌性叶斑病抗性 Bacterial leaf spot resistance | 激活邻近基因PR1表达 Activating expression of the neighboring structural gene PR1 | |
水稻 | LAIR[ | lincNAT | 产量Yield | 染色质重塑Chromatin remodeling |
Oryza sativa | Ef-cd[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
LDMAR[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
XLOC_057324 (MISSEN)[ | lincRNA | 育性 Fertility | 结合非邻近基因靶蛋白质HeFP Binding HeFP encoded by the non-neighboring gene | |
PMS1T[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
TL[ | NAT | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
ALEX1/XLOC_437338[ | NAT | 白叶枯病抗性 Bacterial blight resistance | — | |
小麦 Triticum | Iw1[ | lincRNA | 蜡质合成 β-diketone waxes biosynthesis | miRNA前体 miRNA precursor |
aestivum | VAS[ | sense lncRNA | 开花 Flowering | 激活关联结构基因TaVRN1转录 Activating transcription of the associated structural gene TaVRN1 |
番茄 | lncRNA1459[ | lincRNA | 果实成熟Fruit ripening | — |
Solanum lycopersicum | lncRNA16397[ | NAT | 晚疫病抗性 Phytophthora infestans resistance | 诱导关联结构基因SIGRX21表达 Inducing expression of the associated structural gene SIGRX21 |
lncRNA33732[ | lincRNA | 晚疫病抗性 Phytophthora infestans resistance | 诱导邻近基因RBOH表达 Inducing expression of the neighboring structural gene RBOH | |
slylnc0195[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
slylnc1077[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
蒺藜苜蓿 Medicago | ENOD40[ | lincRNA | 结瘤 Root nodule formation | 蛋白质重定位 Cytoplasmic relocalization of nuclear proteins |
truncatula | PDIL1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
PDIL2[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
PDIL3[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
Mt4/TPSI1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
棉花 | lncRNA973[ | lincRNA | 应对盐胁迫Salt stress | — |
Gossypium hirsutum | GhlncNAT-ANX2[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — |
GhlncNAT-RLP7[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — | |
芜菁 Brassica rapa | bra-eTM160-1[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
bra-eTM160-2[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
野生烟草 Nicotiana | JAL1[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
attenuata | JAL3[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
甘蓝 Brassica oleracea | BoNR8[ | lincRNA | 种子萌发 Seed germination | — |
大白菜 Brassica rapa L. ssp. pekinensis | MSTRG.19915[ | NAT | 霜霉病 Downy mildew resistance | — |
小白菜 Brassica campestris | BcMF11[ | lincRNA | 育性 Fertility | — |
苹果 Malus domestica | MdLNC499[ | lincRNA | 花青素合成 Anthocyanin biosynthesis | 激活邻近基因MdERF109表达 Activating expression of the neighboring structural gene MdERF109 |
Table 1 Function and regulation mechanism of lncRNAs in plants
物种 Species | 基因 Gene name | 来源 Origin | 功能 Function | 作用机制 Mechanism |
---|---|---|---|---|
拟南芥 | COOLAIR[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
Arabidopsis | COLDAIR[ | incRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
thaliana | COLDWRAP[ | sense lncRNA | 开花Flowering | 染色质重塑Chromatin remodeling |
MAS[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling | |
FLORE[ | NAT | 开花 Flowering | 抑制关联结构基因CDFs转录 Repressing transcription of the associated structural gene CDFs | |
npc48[ | lincRNA | 叶片发育、开花 Leaf development and flowering | — | |
asHSFB2a[ | NAT | 配子体发育Fertility | — | |
LINC-AP2[ | lincRNA | 花发育Flower development | — | |
AG-incRNA4[ | incRNA | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
1GOD/asDOG1[ | NAT | 种子休眠Seed dormancy | — | |
HID1(nc3020)[ | lincRNA | 光形态建成 Photomorphogenesis | 抑制非邻近基因PIF3转录 Repressing transcription of the non-neighboring structural gene PIF3 | |
ASCO-lncRNA(npc351)[ | lincRNA | 根发育 Root development | 靶基因的可变剪接 Alternative splicing on the target gene | |
APOLO (npc34)[ | lincRNA | 根发育Root development | 染色质重塑Chromatin remodeling | |
npc536[ | lincRNA | 应对盐胁迫Salt stress | — | |
DRIR[ | lincRNA | 应对干旱和盐胁迫 Drought and salt stress | — | |
SVALKA[ | lincNAT | 应对低温胁迫 Cold stress | 抑制邻近基因CBF1转录 Repressing transcription of the neighboring structural gene CBF1 | |
IPS1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
At4[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
TARs (TAR191/212/224/66)[ | lincRNA | 尖孢镰刀菌抗性 Fusarium oxysporum resistance | — | |
ELENA1[ | lincRNA | 细菌性叶斑病抗性 Bacterial leaf spot resistance | 激活邻近基因PR1表达 Activating expression of the neighboring structural gene PR1 | |
水稻 | LAIR[ | lincNAT | 产量Yield | 染色质重塑Chromatin remodeling |
Oryza sativa | Ef-cd[ | NAT | 开花Flowering | 染色质重塑Chromatin remodeling |
LDMAR[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
XLOC_057324 (MISSEN)[ | lincRNA | 育性 Fertility | 结合非邻近基因靶蛋白质HeFP Binding HeFP encoded by the non-neighboring gene | |
PMS1T[ | lincRNA | 育性Fertility | siRNA前体siRNA precursor | |
TL[ | NAT | 叶片发育Leaf development | 染色质重塑Chromatin remodeling | |
ALEX1/XLOC_437338[ | NAT | 白叶枯病抗性 Bacterial blight resistance | — | |
小麦 Triticum | Iw1[ | lincRNA | 蜡质合成 β-diketone waxes biosynthesis | miRNA前体 miRNA precursor |
aestivum | VAS[ | sense lncRNA | 开花 Flowering | 激活关联结构基因TaVRN1转录 Activating transcription of the associated structural gene TaVRN1 |
番茄 | lncRNA1459[ | lincRNA | 果实成熟Fruit ripening | — |
Solanum lycopersicum | lncRNA16397[ | NAT | 晚疫病抗性 Phytophthora infestans resistance | 诱导关联结构基因SIGRX21表达 Inducing expression of the associated structural gene SIGRX21 |
lncRNA33732[ | lincRNA | 晚疫病抗性 Phytophthora infestans resistance | 诱导邻近基因RBOH表达 Inducing expression of the neighboring structural gene RBOH | |
slylnc0195[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
slylnc1077[ | lincRNA | 黄化曲叶病毒抗性 TYLCV resistance | — | |
蒺藜苜蓿 Medicago | ENOD40[ | lincRNA | 结瘤 Root nodule formation | 蛋白质重定位 Cytoplasmic relocalization of nuclear proteins |
truncatula | PDIL1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
PDIL2[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
PDIL3[ | NAT | P代谢 Phosphate metabolism | 抑制关联结构基因表达 Repressing expression of the associated structural gene | |
Mt4/TPSI1[ | lincRNA | P代谢 Phosphate metabolism | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
棉花 | lncRNA973[ | lincRNA | 应对盐胁迫Salt stress | — |
Gossypium hirsutum | GhlncNAT-ANX2[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — |
GhlncNAT-RLP7[ | NAT | 黄萎病、灰霉病抗性 Verticillium dahlia and Botrytis cinerea resistance | — | |
芜菁 Brassica rapa | bra-eTM160-1[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene |
bra-eTM160-2[ | NA | 育性 Fertility | 与靶基因竞争结合miRNA Competing for miRNA against target gene | |
野生烟草 Nicotiana | JAL1[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
attenuata | JAL3[ | lincRNA | JA介导的植物防御植食昆虫 JA-mediated herbivore resistance | — |
甘蓝 Brassica oleracea | BoNR8[ | lincRNA | 种子萌发 Seed germination | — |
大白菜 Brassica rapa L. ssp. pekinensis | MSTRG.19915[ | NAT | 霜霉病 Downy mildew resistance | — |
小白菜 Brassica campestris | BcMF11[ | lincRNA | 育性 Fertility | — |
苹果 Malus domestica | MdLNC499[ | lincRNA | 花青素合成 Anthocyanin biosynthesis | 激活邻近基因MdERF109表达 Activating expression of the neighboring structural gene MdERF109 |
[1] |
FU X D. Non-coding RNA: a new frontier in regulatory biology[J]. National Science Review, 2014, 1(2): 190-204.
DOI URL |
[2] |
WILUSZ J E, SUNWOO H, SPECTOR D L. Long noncoding RNAs: functional surprises from the RNA world[J]. Genes & Development, 2009, 23(13): 1494-1504.
DOI URL |
[3] |
TSAI M C, MANOR O, WAN Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010, 329(5992): 689-693.
DOI URL |
[4] |
GUTTMAN M, DONAGHEY J, CAREY B W, et al. LincRNAs act in the circuitry controlling pluripotency and differentiation[J]. Nature, 2011, 477(7364): 295-300.
DOI URL |
[5] |
JHA U C, NAYYAR H, JHA R, et al. Long non-coding RNAs: emerging players regulating plant abiotic stress response and adaptation[J]. BMC Plant Biology, 2020, 20(1): 466.
DOI PMID |
[6] |
HUANG J Z, CHEN M, DE CHEN, et al. A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer growth[J]. Molecular Cell, 2017, 68(1): 171-184.
DOI URL |
[7] | WANG H L V, CHEKANOVA J A. Long noncoding RNAs in plants[J]. Advances in Experimental Medicine and Biology, 2017, 1008: 133-154. |
[8] |
WIERZBICKI A T, BLEVINS T, SWIEZEWSKI S. Long noncoding RNAs in plants[J]. Annual Review of Plant Biology, 2021, 72: 245-271.
DOI PMID |
[9] |
MA L N, BAJIC V B, ZHANG Z. On the classification of long non-coding RNAs[J]. RNA Biology, 2013, 10(6): 924-933.
DOI URL |
[10] | LI R, JIN J J, XU J, et al. Long non-coding RNAs associate with jasmonate-mediated plant defense against herbivores[J]. Plant, Cell & Environment, 2021, 44(3): 982-994. |
[11] |
ARIEL F, ROMERO-BARRIOS N, JÉGU T, et al. Battles and hijacks: noncoding transcription in plants[J]. Trends in Plant Science, 2015, 20(6): 362-371.
DOI PMID |
[12] |
LIU J, WANG H, CHUA N H. Long noncoding RNA transcriptome of plants[J]. Plant Biotechnology Journal, 2015, 13(3): 319-328.
DOI PMID |
[13] |
GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291): 1071-1076.
DOI URL |
[14] |
LOEWER S, CABILI M N, GUTTMAN M, et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells[J]. Nature Genetics, 2010, 42(12): 1113-1117.
DOI PMID |
[15] |
KLATTENHOFF C A, SCHEUERMANN J C, SURFACE L E, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment[J]. Cell, 2013, 152(3): 570-583.
DOI PMID |
[16] |
WU H W, DENG S L, XU H Y, et al. A noncoding RNA transcribed from the AGAMOUS (AG) second intron binds to CURLY LEAF and represses AG expression in leaves[J]. The New Phytologist, 2018, 219(4): 1480-1491.
DOI URL |
[17] |
LIU X, LI D Y, ZHANG D L, et al. A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice[J]. The New Phytologist, 2018, 218(2): 774-788.
DOI URL |
[18] |
AMASINO R M, MICHAELS S D. The timing of flowering[J]. Plant Physiology, 2010, 154(2): 516-520.
DOI PMID |
[19] |
HEO J B, SUNG S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA[J]. Science, 2011, 331(6013): 76-79.
DOI PMID |
[20] |
SWIEZEWSKI S, LIU F Q, MAGUSIN A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target[J]. Nature, 2009, 462(7274): 799-802.
DOI URL |
[21] |
CASTAINGS L, BERGONZI S, ALBANI M C, et al. Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives[J]. Nature Communications, 2014, 5: 4457.
DOI URL |
[22] |
CSORBA T, QUESTA J I, SUN Q W, et al. Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(45): 16160-16165.
DOI PMID |
[23] |
KIM D H, SUNG S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs[J]. Developmental Cell, 2017, 40(3): 302-312.
DOI URL |
[24] |
ZHAO X Y, LI J R, LIAN B, et al. Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA[J]. Nature Communications, 2018, 9: 5056.
DOI URL |
[25] |
FANG J, ZHANG F T, WANG H R, et al. Ef-cd locus shortens rice maturity duration without yield penalty[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(37): 18717-18722.
DOI PMID |
[26] |
XU S J, DONG Q, DENG M, et al. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat[J]. Molecular Plant, 2021, 14(9): 1525-1538.
DOI URL |
[27] |
DING J H, LU Q, OUYANG Y D, et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2654-2659.
DOI PMID |
[28] |
FAN Y R, YANG J Y, MATHIONI S M, et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(52): 15144-15149.
DOI PMID |
[29] |
ZHANG Y C, LIAO J Y, LI Z Y, et al. Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice[J]. Genome Biology, 2014, 15(12): 512.
DOI URL |
[30] |
ZHOU Y F, ZHANG Y C, SUN Y M, et al. The parent-of-origin lncRNA MISSEN regulates rice endosperm development[J]. Nature Communications, 2021, 12(1): 6525.
DOI URL |
[31] |
HUANG L, DONG H, ZHOU D, et al. Systematic identification of long non-coding RNAs during pollen development and fertilization in Brassica rapa[J]. The Plant Journal, 2018, 96(1): 203-222.
DOI URL |
[32] | BENTSINK L, JOWETT J, HANHART C J, et al. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(45): 17042-17047. |
[33] | FEDAK H, PALUSINSKA M, KRZYCZMONIK K, et al. Control of seed dormancy in Arabidopsis by a cis-acting noncoding antisense transcript[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): E7846-E7855. |
[34] |
WU J, OKADA T, FUKUSHIMA T, et al. A novel hypoxic stress-responsive long non-coding RNA transcribed by RNA polymerase III in Arabidopsis[J]. RNA Biology, 2012, 9(3): 302-313.
DOI URL |
[35] |
WU J, LIU C X, LIU Z G, et al. Pol III-dependent cabbage BoNR8 long ncRNA affects seed germination and growth in Arabidopsis[J]. Plant and Cell Physiology, 2018, 60(2): 421-435.
DOI URL |
[36] |
ZHU B Z, YANG Y F, LI R, et al. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening[J]. Journal of Experimental Botany, 2015, 66(15): 4483-4495.
DOI PMID |
[37] |
LI R, FU D Q, ZHU B Z, et al. CRISPR/Cas9-mediated mutagenesis of lncRNA1459 alters tomato fruit ripening[J]. The Plant Journal: for Cell and Molecular Biology, 2018, 94(3): 513-524.
DOI PMID |
[38] |
HENRIQUES R, WANG H, LIU J, et al. The antiphasic regulatory module comprising CDF5 and its antisense RNA FLORE links the circadian clock to photoperiodic flowering[J]. The New Phytologist, 2017, 216(3): 854-867.
DOI URL |
[39] |
BEN AMOR B, WIRTH S, MERCHAN F, et al. Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses[J]. Genome Research, 2009, 19(1): 57-69.
DOI URL |
[40] |
WUNDERLICH M, GROSS-HARDT R, SCHÖFFL F. Heat shock factor HSFB2a involved in gametophyte development of Arabidopsis thaliana and its expression is controlled by a heat-inducible long non-coding antisense RNA[J]. Plant Molecular Biology, 2014, 85(6): 541-550.
DOI URL |
[41] |
GAO R M, LIU P, IRWANTO N, et al. Upregulation of LINC-AP2 is negatively correlated with AP2 gene expression with Turnip crinkle virus infection in Arabidopsis thaliana[J]. Plant Cell Reports, 2016, 35(11): 2257-2267.
DOI URL |
[42] | WANG Y Q, FAN X D, LIN F, et al. Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(28): 10359-10364. |
[43] |
WANG Y Q, WANG X C, DENG W, et al. Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis[J]. Molecular Plant, 2014, 7(3): 514-527.
DOI URL |
[44] |
BARDOU F, ARIEL F, SIMPSON C G, et al. Long noncoding RNA modulates alternative splicing regulators in Arabidopsis[J]. Developmental Cell, 2014, 30(2): 166-176.
DOI URL |
[45] |
QIN T, ZHAO H Y, CUI P, et al. A nucleus-localized long non-coding RNA enhances drought and salt stress tolerance[J]. Plant Physiology, 2017, 175(3): 1321-1336.
DOI PMID |
[46] |
KINDGREN P, ARD R, IVANOV M, et al. Transcriptional read-through of the long non-coding RNA SVALKA governs plant cold acclimation[J]. Nature Communications, 2018, 9: 4561.
DOI URL |
[47] |
FRANCO-ZORRILLA J M, VALLI A, TODESCO M, et al. Target mimicry provides a new mechanism for regulation of microRNA activity[J]. Nature Genetics, 2007, 39(8): 1033-1037.
DOI URL |
[48] |
SHIN H, SHIN H S, CHEN R J, et al. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J]. The Plant Journal: for Cell and Molecular Biology, 2006, 45(5): 712-726.
DOI URL |
[49] |
ZHU Q H, STEPHEN S, TAYLOR J, et al. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana[J]. The New Phytologist, 2014, 201(2): 574-584.
DOI URL |
[50] |
SEO J S, SUN H X, PARK B S, et al. ELF18-INDUCED LONG-NONCODING RNA associates with mediator to enhance expression of innate immune response genes in Arabidopsis[J]. The Plant Cell, 2017, 29(5): 1024-1038.
DOI URL |
[51] |
WANG Y, LUO X J, SUN F, et al. Overexpressing lncRNA LAIR increases grain yield and regulates neighbouring gene cluster expression in rice[J]. Nature Communications, 2018, 9: 3516.
DOI URL |
[52] |
DING J H, SHEN J Q, MAO H L, et al. RNA-directed DNA methylation is involved in regulating photoperiod-sensitive male sterility in rice[J]. Molecular Plant, 2012, 5(6): 1210-1216.
DOI PMID |
[53] |
ZHOU H, LIU Q J, LI J, et al. Photoperiod-and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA[J]. Cell Research, 2012, 22(4): 649-660.
DOI URL |
[54] |
YU Y, ZHOU Y F, FENG Y Z, et al. Transcriptional landscape of pathogen-responsive lncRNAs in rice unveils the role of ALEX1 in jasmonate pathway and disease resistance[J]. Plant Biotechnology Journal, 2020, 18(3): 679-690.
DOI PMID |
[55] | HUANG D, FEURTADO J A, SMITH M A, et al. Long noncoding miRNA gene represses wheat β-diketone waxes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(15): E3149-E3158. |
[56] |
CUI J, LUAN Y S, JIANG N, et al. Comparative transcriptome analysis between resistant and susceptible tomato allows the identification of lncRNA16397 conferring resistance to Phytophthora infestans by co-expressing glutaredoxin[J]. The Plant Journal: for Cell and Molecular Biology, 2017, 89(3): 577-589.
DOI URL |
[57] |
CUI J, JIANG N, MENG J, et al. LncRNA33732-respiratory burst oxidase module associated with WRKY1 in tomato-Phytophthora infestans interactions[J]. The Plant Journal: for Cell and Molecular Biology, 2019, 97(5): 933-946.
DOI URL |
[58] |
WANG J Y, YU W G, YANG Y W, et al. Genome-wide analysis of tomato long non-coding RNAs and identification as endogenous target mimic for microRNA in response to TYLCV infection[J]. Scientific Reports, 2015, 5: 16946.
DOI PMID |
[59] |
CAMPALANS A, KONDOROSI A, CRESPI M. Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula[J]. The Plant Cell, 2004, 16(4): 1047-1059.
DOI URL |
[60] |
WANG T Z, ZHAO M G, ZHANG X X, et al. Novel phosphate deficiency-responsive long non-coding RNAs in the legume model plant Medicago truncatula[J]. Journal of Experimental Botany, 2017, 68(21/22): 5937-5948.
DOI URL |
[61] |
BURLEIGH S H, HARRISON M J. A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition[J]. Plant Molecular Biology, 1997, 34(2): 199-208.
DOI URL |
[62] |
ZHANG X P, DONG J, DENG F N, et al. The long non-coding RNA lncRNA973 is involved in cotton response to salt stress[J]. BMC Plant Biology, 2019, 19(1): 459.
DOI PMID |
[63] |
ZHANG L, WANG M J, LI N N, et al. Long noncoding RNAs involve in resistance to Verticillium dahliae, a fungal disease in cotton[J]. Plant Biotechnology Journal, 2018, 16(6): 1172-1185.
DOI URL |
[64] |
ZHANG B, SU T B, LI P R, et al. Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage[J]. Horticulture Research, 2021, 8: 44.
DOI PMID |
[65] |
SONG J H, CAO J S, WANG C G. BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility[J]. Plant Cell Reports, 2013, 32(1): 21-30.
DOI URL |
[66] |
SONG J H, CAO J S, YU X L, et al. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis[J]. Journal of Plant Physiology, 2007, 164(8): 1097-1100.
DOI URL |
[67] |
MA H Y, YANG T, LI Y, et al. The long noncoding RNA MdLNC499 bridges MdWRKY1 and MdERF109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit[J]. The Plant Cell, 2021, 33(10): 3309-3330.
DOI URL |
[68] |
ARIEL F, JEGU T, LATRASSE D, et al. Noncoding transcription by alternative RNA polymerases dynamically regulates an auxin-driven chromatin loop[J]. Molecular Cell, 2014, 55(3): 383-396.
DOI PMID |
[69] |
JIA L, ZHANG D Y, XIANG Z H, et al. Nonfunctional ingestion of plant miRNAs in silkworm revealed by digital droplet PCR and transcriptome analysis[J]. Scientific Reports, 2015, 5: 12290.
DOI PMID |
[70] |
CHEN Y, SINGH A, KAITHAKOTTIL G G, et al. An aphid RNA transcript migrates systemically within plants and is a virulence factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12763-12771.
DOI PMID |
[1] | JIN Baoxia, WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong. Effects of different hormone combinations on tomato in vitro regeneration and related gene expression [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1889-1900. |
[2] | YAN Mei, YAO Yandong, MOU Kaiping, DAN Yuanyuan, LI Weitai, LIAO Weibiao. Involvement of abscisic acid in hydrogen gas-enhanced drought resistance by improving antioxidant enzyme activity and gene expression in tomato seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1901-1910. |
[3] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[4] | JIANG Ruiping, ZHAO Chenhui, LI Wenjie, AN Qiuju, LI Jialun, ZHOU Jiayu, LI Suiyan, LIAO Hai. Codon bias of IPI gene in leguminous plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1114-1123. |
[5] | LI Wenxiang, WANG Fang, WANG Jian. Cloning and target gene screening of miR397 in potato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1141-1151. |
[6] | LI Hanfen, LI Dingli, WANG Ran, MA Chunhui. Effects of different dwarfing interstocks on Whangkumbae pear growth and correlation analysis of graft-compatibility [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1175-1182. |
[7] | SHENG Xiaoguang, SHEN Yusen, YU Huifang, WANG Jiansheng, ZHAO Zhenqing, GU Honghui. Development and application of KASP marker of BoCAL gene related to curd development in cauliflower [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1183-1192. |
[8] | MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216. |
[9] | LI Liyan, TAN Haixia, LI Jing, WANG Lianlong, DU Yinghui, XU Zhiwen. Screening of salt-tolerant growth-promoting Bacillus strains and their effect on oat growth under salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1268-1276. |
[10] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[11] | ZHONG Lijun, DENG Jiaqiang, GU Congwei, SHEN Liuhong, CAO Suizhong, YU Shumin. Effects of MitoQ on mitochondrial function and antioxidant capacity of canine bone marrow mesenchymal stem cells [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 934-941. |
[12] | XIONG Xinyi, XU Zeyu, HE Nianjia, HE Junbo, CHEN Zhengli, HUANG Chao, LIU Wentao, LUO Qihui. Effects of soy isoflavones on oxidative stress and inflammatory response in liver of rats with food borne obesity [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 942-948. |
[13] | LI Jingshang, ZHANG Xiaojun, CHEN Shengchang, JIANG Jinhua, XIANG Yun, TU Pingguang, LOU Fangfang, YANG Hua, XIAO Yingping. Developmental changes of amino acid profiles in muscle and serum and their correlation with muscle growth of Jinhua pigs [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 687-694. |
[14] | LI Xiaolan, ZHANG Rui, HAO Lanlan, WANG Hong. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. |
[15] | LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1331
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 629
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||