Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 33-40.DOI: 10.3969/j.issn.1004-1524.2023.01.04
• Animal Science • Previous Articles Next Articles
CHEN Leran1,2(), ZHENG Jianbo2, JIA Yongyi2, CHI Meili2, LI Fei2, CHENG Shun2, LIU Shili2, LIU Yinuo2, JIANG Wenping2, GU Zhimin1,*(
)
Received:
2022-04-06
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
CHEN Leran, ZHENG Jianbo, JIA Yongyi, CHI Meili, LI Fei, CHENG Shun, LIU Shili, LIU Yinuo, JIANG Wenping, GU Zhimin. Expression profiles of CHH2 gene in redclaw crayfish Cherax quadricarinatus and its role in ovarian development[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 33-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.01.04
蛋白质名称 Protein name | 物种 Species | 基因登录号 GenBank No. | 蛋白质名称 Protein name | 物种 Species | 基因登录号 GenBank No. |
---|---|---|---|---|---|
CHH | 马氏沼虾Macrobrachium malcolmsonii | QIX07539.1 | CHH-B | 挪威龙虾Nephrops norvegicus | AAQ22392.1 |
CHH | 北极甜虾Pandalus japonicus | AFG16933.1 | CHH | 窄指河螯虾Astacus leptodactylus | AAX09331.1 |
CHH-B | 欧洲龙虾Homarus gammarus | ABA42180.1 | CHH | 美洲螯龙虾Homarus americanus | XP_042231195.1 |
CHH2 | 大西洋无眼裂缝虾Rimicaris kairei | ACS35347.1 | CHH | 细纹方蟹Grapsus tenuicrustatus | AER27832.1 |
CHH2 | 红螯螯虾Cherax quadricarinatus | MH210971.1 | CHH-B | 南美白对虾Penaeus vannamei | AAN86055.1 |
CHH | 云斑厚纹蟹Pachygrapsus marmoratus | AAM21927.1 | CHH3 | 红螯螯虾Cherax quadricarinatus | MH210972.1 |
CHH1 | 红螯螯虾Cherax quadricarinatus | MH210970.1 |
Table 1 CHH proteins used for sequence alignment and phylogenic analysis
蛋白质名称 Protein name | 物种 Species | 基因登录号 GenBank No. | 蛋白质名称 Protein name | 物种 Species | 基因登录号 GenBank No. |
---|---|---|---|---|---|
CHH | 马氏沼虾Macrobrachium malcolmsonii | QIX07539.1 | CHH-B | 挪威龙虾Nephrops norvegicus | AAQ22392.1 |
CHH | 北极甜虾Pandalus japonicus | AFG16933.1 | CHH | 窄指河螯虾Astacus leptodactylus | AAX09331.1 |
CHH-B | 欧洲龙虾Homarus gammarus | ABA42180.1 | CHH | 美洲螯龙虾Homarus americanus | XP_042231195.1 |
CHH2 | 大西洋无眼裂缝虾Rimicaris kairei | ACS35347.1 | CHH | 细纹方蟹Grapsus tenuicrustatus | AER27832.1 |
CHH2 | 红螯螯虾Cherax quadricarinatus | MH210971.1 | CHH-B | 南美白对虾Penaeus vannamei | AAN86055.1 |
CHH | 云斑厚纹蟹Pachygrapsus marmoratus | AAM21927.1 | CHH3 | 红螯螯虾Cherax quadricarinatus | MH210972.1 |
CHH1 | 红螯螯虾Cherax quadricarinatus | MH210970.1 |
引物名称 Primer name | 序列 Sequences (5'→3') | 目的 Purpose |
---|---|---|
CHH2-RT-F | CCTCTCACAAGATCACAGCCTCAAC | qRT-PCR |
CHH2-RT-R | GTAACAATCATCACAAACTCGGTCAAGC | qRT-PCR |
β-actin-RT-F | TCACTGCTCTGGCTCCTGCTAC | qRT-PCR |
β-actin-RT-R | ACTCGTCGTACTCCTCCTTGGTG | qRT-PCR |
VTG-RT-F | CAGTCCGAGTATTCCGCCAAGAAC | qRT-PCR |
VTG-RT-R | AACCAGTCGTTACCAACTTCACCATC | qRT-PCR |
CHH2-dsRNA-F | TAATACGACTCACTATAGGGatgacctcctgcagaacgat | RNA interference |
CHH2-dsRNA-R | TAATACGACTCACTATAGGGacagtaacatggtgttccga | RNA interference |
Table 2 Primers used for gene cloning and expression analysis
引物名称 Primer name | 序列 Sequences (5'→3') | 目的 Purpose |
---|---|---|
CHH2-RT-F | CCTCTCACAAGATCACAGCCTCAAC | qRT-PCR |
CHH2-RT-R | GTAACAATCATCACAAACTCGGTCAAGC | qRT-PCR |
β-actin-RT-F | TCACTGCTCTGGCTCCTGCTAC | qRT-PCR |
β-actin-RT-R | ACTCGTCGTACTCCTCCTTGGTG | qRT-PCR |
VTG-RT-F | CAGTCCGAGTATTCCGCCAAGAAC | qRT-PCR |
VTG-RT-R | AACCAGTCGTTACCAACTTCACCATC | qRT-PCR |
CHH2-dsRNA-F | TAATACGACTCACTATAGGGatgacctcctgcagaacgat | RNA interference |
CHH2-dsRNA-R | TAATACGACTCACTATAGGGacagtaacatggtgttccga | RNA interference |
Fig.4 Relative expression level of CHH2 gene at different developmental stages of ovary OⅠ, Undeveloped stage; OⅡ, Developing stage; OⅢ, Rapidly developing stage; OⅣ, Ripe stage. Different letters above the vertical bars denote significant differences (P<0.05). The same as below.
[1] | ZHANG L, PAN L Q, XU L J, et al. Effects of ammonia-N exposure on the concentrations of neurotransmitters, hemocyte intracellular signaling pathways and immune responses in white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2018, 75: 48-57. |
[2] |
KELLER R. Crustacean neuropeptides: Structures, functions and comparative aspects[J]. Experientia, 1992, 48(5): 439-448.
PMID |
[3] |
TSUTSUI N, KATAYAMA H, OHIRA T, et al. The effects of crustacean hyperglycemic hormone-family peptides on vitellogenin gene expression in the kuruma prawn, Marsupenaeus japonicus[J]. General and Comparative Endocrinology, 2005, 144(3): 232-239.
DOI URL |
[4] |
LI A, LIU J, CHEN X L, et al. A novel crustacean hyperglycemic hormone (CHH) from the mud crab Scylla paramamosain regulating carbohydrate metabolism[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2019, 231: 49-55.
DOI URL |
[5] |
FU C R, HUANG X S, GONG J, et al. Crustacean hyperglycaemic hormone gene from the mud crab, Scylla paramamosain: cloning, distribution and expression profiles during the moulting cycle and ovarian development[J]. Aquaculture Research, 2016, 47(7): 2183-2194.
DOI URL |
[6] | TENSEN C P, DE KLEIJN D P, VAN HERP F. Cloning and sequence analysis of cDNA encoding two crustacean hyperglycemic hormones from the lobster Homarus americanus[J]. Lakartidningen, 1991, 200(1): 103-106. |
[7] |
KEGEL G, REICHWEIN B, WEESE S, et al. Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas[J]. FEBS Letters, 1989, 255(1): 10-14.
DOI URL |
[8] |
CHUNG J S, WILKINSON M C, WEBSTER S G, et al. Amino acid sequences of both isoforms of crustacean hyperglycemic hormone (CHH) and corresponding precursor-related peptide in Cancer pagurus[J]. Regulatory Peptides, 1998, 77(1/2/3): 17-24.
DOI URL |
[9] |
HUBERMAN A. Primary structure of the major isomorph of the crustacean hyperglycemic hormone (CHH-I) from the sinus gland of the Mexican crayfish Procambarus bouvieri(Ortmann): Inter species comparison[J]. Peptides, 1993, 14(1): 7-16.
DOI URL |
[10] |
YASUDA A, YASUDA Y, FUJITA T, et al. Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): multiplicity of molecular forms by stereoinversion and diverse functions[J]. General and Comparative Endocrinology, 1994, 95(3): 387-398.
PMID |
[11] |
MARTIN G, KELLER R, KEGEL G, et al. The hyperglycemic neuropeptide of the terrestrial isopod, Porcellio dilatatus. I. isolation and characterization[J]. General and Comparative Endocrinology, 1984, 55(2): 208-216.
DOI URL |
[12] |
UDOMKIT A, TREERATTRAKOOL S, PANYIM S, et al. Crustacean hyperglycemic hormones of Penaeus monodon: cloning, production of active recombinant hormones and their expression in various shrimp tissues[J]. Journal of Experimental Marine Biology and Ecology, 2004, 298(1): 79-91.
DOI URL |
[13] | LIU J K, ZHOU T T, WANG C S, et al. Comparative transcriptomics reveals eyestalk ablation induced responses of the neuroendocrine-immune system in the Pacific white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 2020, 106: 823-832. |
[14] |
QIU L H, ZHAO C, WANG P F, et al. Genomic structure, expression, and functional characterization of checkpoint kinase 1 from Penaeus monodon[J]. PLoS One, 2018, 13(5): e0198036.
DOI URL |
[15] | MEDLEY P B, JONES C M, AVAULT J W. A global perspective of the culture of Australian redclaw crayfish, Cherax quadricarinatus: production, economics and marketing[J]. World Aquacult, 1994, 25: 6-13. |
[16] | ROUSE D B. Australian crayfish culture in the Americas[J]. Journal of Shellfish Research, 1995, 14(2): 569-572. |
[17] | CHEN H Y, TOULLEC J Y, LEE C Y. The crustacean hyperglycemic hormone superfamily: progress made in the past decade[J]. The Journal of Prevention of Alzheimer’s Disease, 2020, 11: 578958. |
[18] | SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. International Journal of Molecular Medicine, 2008, 3(6): 1101-1108. |
[19] |
CHUNG J S, ZMORAN, KATAYAMA H, et al. Crustacean hyperglycemic hormone (CHH) neuropeptides family: functions, titer, and binding to target tissues[J]. General and Comparative Endocrinology, 2010, 166(3): 447-454.
DOI URL |
[20] | 吴勉之, 杨丽诗, 周发林, 等. 斑节对虾2种高血糖激素家族基因的基因组序列分析和表达研究[J]. 南方水产科学, 2018, 14(4): 27-36. |
WU M Z, YANG L S, ZHOU F L, et al. Genome sequence analysis and expression of two CHH genes in tiger shrimp (Penaeus monodon)[J]. South China Fisheries Science, 2018, 14(4): 27-36. (in Chinese with English abstract) | |
[21] | WIWEGWEAW A, UDOMKIT A, PANYIM S. Molecular structure and organization of crustacean hyperglycemic hormone genes of Penaeus monodon[J]. Journal of Biochemistry and Molecular Biology, 2004, 37(2): 177-184. |
[22] |
LUGO J M, MORERA Y, RODRÍGUEZ T, et al. Molecular cloning and characterization of the crustacean hyperglycemic hormone cDNA from Litopenaeus schmitti. Functional analysis by double-stranded RNA interference technique[J]. The FEBS Journal, 2006, 273(24): 5669-5677.
DOI URL |
[23] | PANCHAN N, PETSOM A, VILAIVAN T, et al. Immunochemical analysis and immunocytochemical localization of crustacean hyperglycemic hormone of the giant freshwater prawn, Macrobrachium rosenbergii[J]. Warasan Witthayasat Mosowo, 1999, 124(1):73-80. |
[24] | 金舒博, 王宁, 乔慧, 等. 青虾高血糖激素基因全长cDNA序列的克隆及表达分析[J]. 中国水产科学, 2013, 20(1): 82-92. |
JIN S B, WANG N, QIAO H, et al. Molecular cloning and expression of a full length cDNA encoding crustacean hyperglycemic hormone(CHH) in oriental river pawn (Macrobrachium nipponense)[J]. Journal of Fishery Sciences of China, 2013, 20(1): 82-92. (in Chinese with English abstract)
DOI URL |
|
[25] |
NAGAI-OKATANI C, NAGATA S, NAGASAWA H, et al. Tissue distribution and biochemical characteristics of receptors for sinus gland peptide Ⅶ as a crustacean hyperglycemic hormone and vitellogenesis-inhibiting hormone of the kuruma prawn, Marsupenaeus japonicus[J]. General and Comparative Endocrinology, 2018, 266: 157-165.
DOI URL |
[26] |
MANI T, SUBRAMANIYA B R, CHIDAMBARAM IYER S, et al. Modulation of complex coordinated molecular signaling by 5HT and a cocktail of inhibitors leads to ovarian maturation of Penaeus monodon in captivity[J]. Molecular Reproduction and Development, 2019, 86(5): 576-591.
DOI URL |
[27] |
TREERATTRAKOOL S, PANYIM S, UDOMKIT A. Induction of ovarian maturation and spawning in Penaeus monodon broodstock by double-stranded RNA[J]. Marine Biotechnology, 2011, 13(2): 163-169.
DOI URL |
[1] | LIU Shili, BIAN Yuling, JIA Yongyi, CHI Meili, LI Fei, ZHENG Jianbo, CHENG Shun, GU Zhimin. Genetics analysis based on mitochondrial COⅠ sequences in five cultured populations of red-claw crayfish (Cherax quadricarinatus) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1385-1392. |
[2] | FENG Shangle, LI Xuenan, CHEN Yige, LIU Ruiqi, BAI Zhiyi, LI Wenjuan. Screening and expression of cyclins gene in Hyriopsis cumingii [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2041-2050. |
[3] | NI Ligang, ZHAO Xuting, WANG Xiaoyan, SONG Chengyi, WU Xinsheng, GAN Yuan. MicroRNA sequencing and analysis of porcine lung of Jiangquhai pig response to Mycoplasma hyopneumoniae infection [J]. , 2019, 31(12): 1979-1986. |
[4] | ZHAO Ying\|jie1,LIU Chun\|lin2,RUAN Ying1,*. Cloning of AtSb10 gene in Arabidopsis thaliana and over\|expression of AtSb10 in Arabidopsis thaliana#br# [J]. , 2015, 27(9): 1550-. |
[5] | DONG Ruixian;WANG Xuming;YAN Chengqi;CHEN Jianping;* . The function of rice OsBBR1 in resistance to rice bacterial blight disease [J]. , 2011, 23(6): 0-1146. |
[6] | HE Qiong-ji;YAN Fei;CHEN Jian-ping;*. Advance of RNA interference (RNAi) mechanism and the main proteins in RNAi [J]. , 2011, 23(2): 0-420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||