Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 23-32.DOI: 10.3969/j.issn.1004-1524.2023.01.03
• Crop Science • Previous Articles Next Articles
DONG Feiyan1,2(), SONG Jinghan1,3, ZHANG Huadong1,2, WU Haotian2, LI Yaqian1,2, LIU Mengwei2, GAO Chunbao1,2, FANG Zhengwu1,*(
), LIU Yike2,*(
)
Received:
2022-04-06
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
DONG Feiyan, SONG Jinghan, ZHANG Huadong, WU Haotian, LI Yaqian, LIU Mengwei, GAO Chunbao, FANG Zhengwu, LIU Yike. Clonging and expression analysis of TaPAT1-2D gene in wheat[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 23-32.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.01.03
引物名称Primer name | 序列Sequence(5'→3') |
---|---|
pCAMBIA2300-TaPAT1-2D-GFP-F | CTCGGTACCCGGGGATCCTCTAGAATGGCCGACACTCCAACTTCCCGG |
pCAMBIA2300-TaPAT1-2D-GFP-R | GCCCTTGCTCACCATGGTGTCGACGTGCCATGCGGAGGAGACGACGAGG |
qPCR-TaPAT1-2D-F | CTACAAGGCCTTGAGGTGCA |
qPCR-TaPAT1-2D-R | TGGAGGAGGGAGATCCACTG |
Ta2291-F | GCTCTCCAACAACATTGCCAAC |
Ta2291-R | GCTTCTGCCTGTCACATACGC |
pGBKT7-TaPAT1-2D-F | CATATGGCCATGGAGGCCGAATTCATGGCCGACACTCCAACTTCCCGG |
pGBKT7-TaPAT1-2D-R | CGGCCGCTGCAGGTCGACGGATCCTCAGTGCCATGCGGAGGAGACGACGAGG |
Table 2 Primers used in the study
引物名称Primer name | 序列Sequence(5'→3') |
---|---|
pCAMBIA2300-TaPAT1-2D-GFP-F | CTCGGTACCCGGGGATCCTCTAGAATGGCCGACACTCCAACTTCCCGG |
pCAMBIA2300-TaPAT1-2D-GFP-R | GCCCTTGCTCACCATGGTGTCGACGTGCCATGCGGAGGAGACGACGAGG |
qPCR-TaPAT1-2D-F | CTACAAGGCCTTGAGGTGCA |
qPCR-TaPAT1-2D-R | TGGAGGAGGGAGATCCACTG |
Ta2291-F | GCTCTCCAACAACATTGCCAAC |
Ta2291-R | GCTTCTGCCTGTCACATACGC |
pGBKT7-TaPAT1-2D-F | CATATGGCCATGGAGGCCGAATTCATGGCCGACACTCCAACTTCCCGG |
pGBKT7-TaPAT1-2D-R | CGGCCGCTGCAGGTCGACGGATCCTCAGTGCCATGCGGAGGAGACGACGAGG |
名称Name | 描述Description | 网址Website |
---|---|---|
SMART | 功能结构域Functional domain | http://smart.embl-hei-delberg.de/ |
GSDS | 基因结构Structure of gene | http://gsds.gao-lab.org/ |
ProtParam | 理化性质Physical and chemical properties | https://web.expasy.org/protparam/ |
NetPhos | 磷酸化位点Phosphorylation site | http://www.cbs.dtu.dk/services/ NetPhos/ |
ProtScale | 亲疏水性Hydrophilicity | https://web.expasy.org/protscale/ |
SOPMA | 二级结构Secondary structure | https://npsa-prabi.ibcp. fr/cgi-bin/secpred_sopma.pl |
PlantCARE | 顺式元件Cis-acting element | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
SignalP | 信号肽Signal peptide | https://services.healthtech.dtu.dk/service.php?SignalP-5.0 |
TMHMM | 跨膜区Transmembrane area | https://services.healthtech.dtu.dk/service.php?TMHMM-2.0 |
Softberry | 亚细胞定位Subcellular localization | http://www.softberry.com/ |
Ensembl | 基因组Genome | https://asia.ensembl.org/index.html |
Table 1 Tools and databases used in bioinformatics analysis
名称Name | 描述Description | 网址Website |
---|---|---|
SMART | 功能结构域Functional domain | http://smart.embl-hei-delberg.de/ |
GSDS | 基因结构Structure of gene | http://gsds.gao-lab.org/ |
ProtParam | 理化性质Physical and chemical properties | https://web.expasy.org/protparam/ |
NetPhos | 磷酸化位点Phosphorylation site | http://www.cbs.dtu.dk/services/ NetPhos/ |
ProtScale | 亲疏水性Hydrophilicity | https://web.expasy.org/protscale/ |
SOPMA | 二级结构Secondary structure | https://npsa-prabi.ibcp. fr/cgi-bin/secpred_sopma.pl |
PlantCARE | 顺式元件Cis-acting element | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
SignalP | 信号肽Signal peptide | https://services.healthtech.dtu.dk/service.php?SignalP-5.0 |
TMHMM | 跨膜区Transmembrane area | https://services.healthtech.dtu.dk/service.php?TMHMM-2.0 |
Softberry | 亚细胞定位Subcellular localization | http://www.softberry.com/ |
Ensembl | 基因组Genome | https://asia.ensembl.org/index.html |
Fig.3 Bioinformatics analysis of TaPAT1-2D protein A, Analysis of hydrophilic and hydrophobic amino acid. B, Phosphorylation sites analysis. C, Prediction of secondary structure; Blue, Alpha helix; Orange, Random coil; Red, Extended strand; Green, β turn.
顺式作用元件名称 Name of cis-acting element | 功能 Function |
---|---|
TGA-element | 生长素反应元件Auxin-responsive element |
TATA-box | 转录起始-30区核心启动子元件Core promoter element around-30 of transcription start |
TGACG-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
CGTCA-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
AuxRR-core | 参与生长素反应响应的顺式作用调控元件Cis-acting regulatory element involved in auxin responsiveness |
CCAAT-box | MYBHv1结合位点MYBHv1 binding site |
ARE | 对厌氧诱导必需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction |
CAAT-box | 启动子和增强子区的一般顺式作用元件Common cis-acting element in promoter and enhancer regions |
ABRE | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
Box 4 | 部分光响应保守元件Part of a conserved DNA module involved in light responsiveness |
G-box | 参与光反应的顺式作用调节元件Cis-acting regulatory element involved in light responsiveness |
MRE | 参与光响应的MYB结合位点MYB binding site involved in light responsiveness |
Table 3 Cis-acting element of TaPAT1-2D gene in the promoter regions
顺式作用元件名称 Name of cis-acting element | 功能 Function |
---|---|
TGA-element | 生长素反应元件Auxin-responsive element |
TATA-box | 转录起始-30区核心启动子元件Core promoter element around-30 of transcription start |
TGACG-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
CGTCA-motif | 参与茉莉酸甲酯响应的顺式作用调控元件Cis-acting regulatory element involved in the MeJA-responsiveness |
AuxRR-core | 参与生长素反应响应的顺式作用调控元件Cis-acting regulatory element involved in auxin responsiveness |
CCAAT-box | MYBHv1结合位点MYBHv1 binding site |
ARE | 对厌氧诱导必需的顺式作用元件Cis-acting regulatory element essential for the anaerobic induction |
CAAT-box | 启动子和增强子区的一般顺式作用元件Common cis-acting element in promoter and enhancer regions |
ABRE | 参与脱落酸反应的顺式作用元件Cis-acting element involved in the abscisic acid responsiveness |
Box 4 | 部分光响应保守元件Part of a conserved DNA module involved in light responsiveness |
G-box | 参与光反应的顺式作用调节元件Cis-acting regulatory element involved in light responsiveness |
MRE | 参与光响应的MYB结合位点MYB binding site involved in light responsiveness |
Fig.8 Transactivation activity of TaPAT1-2D in wheat 10-1, 10-2, 10-3 and 10-4 were four different dilution concentration of yeast solution; pGBKT7-53+pGADT7-T was positive control group; pGBKT7-Lam+pGADT7-T was negative control group; pGBKT7-EV+pGADT7-EV was empty carrier group and pGBKT7-TaPAT1-2D+pGADT7-EV was the experimental group; SD-T-L was SD/-Trp-Leu nutrient deficiency medium and SD-T-L-H-A was SD/-Trp-Leu-His-Ade nutrient deficiency medium.
[1] | 刘易科, 佟汉文, 朱展望, 等. 小麦赤霉病抗性改良研究进展[J]. 麦类作物学报, 2016, 36(1): 51-57. |
LIU Y K, TONG H W, ZHU Z W, et al. Review on improvement of Fusarium head blight resistance in wheat[J]. Journal of Triticeae Crops, 2016, 36(1): 51-57. (in Chinese with English abstract) | |
[2] | 孙悦. 黄淮麦区小麦中镰刀菌的分离及其产毒控制[D]. 杨凌: 西北农林科技大学, 2018. |
SUN Y. The separation of Fusarium from wheat in Huanghuai area and control its toxins[D]. Yangling: Northwest A & F University, 2018. (in Chinese with English abstract) | |
[3] |
TIAN C, WAN P, SUN S, et al. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis[J]. Plant Molecular Biology, 2004, 54(4): 519-532.
DOI URL |
[4] |
LI X Y, QIAN Q, FU Z M, et al. Control of tillering in rice[J]. Nature, 2003, 422(6932): 618-621.
DOI URL |
[5] | PENG J, CAROL P, RICHARDS D E, et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses[J]. BMC Bioinformatics, 1997, 11(23): 3194-3205. |
[6] |
HELARIUTTA Y, FUKAKI H, WYSOCKA-DILLER J, et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling[J]. Cell, 2000, 101(5): 555-567.
DOI URL |
[7] |
CUI H, LEVESQUE M P, VERNOUX T, et al. An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants[J]. Science, 2007, 316(5823): 421-425.
PMID |
[8] |
MOROHASHI K, MINAMI M, TAKASE H, et al. Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression[J]. Journal of Biological Chemistry, 2003, 278(23): 20865-20873.
DOI URL |
[9] |
SUN T P, GUBLER F. Molecular mechanism of gibberellin signaling in plants[J]. Annual Review of Plant Biology, 2004, 55: 197-223.
DOI URL |
[10] |
PARK J, NGUYEN K T, PARK E, et al. DELLA proteins and their interacting RING finger proteins repress gibberellin responses by binding to the promoters of a subset of gibberellin-responsive genes in Arabidopsis[J]. The Plant Cell, 2013, 25(3): 927-943.
DOI URL |
[11] |
TORRES-GALEA P, HUANG L F, CHUA N H, et al. The GRAS protein SCL13 is a positive regulator of phytochrome-dependent red light signaling, but can also modulate phytochrome A responses[J]. Molecular Genetics and Genomics, 2006, 276(1): 13-30.
DOI URL |
[12] |
TORRES-GALEA P, HIRTREITER B, BOLLE C. Two GRAS proteins, SCARECROW-LIKE21 and PHYTOCHROME A SIGNAL TRANSDUCTION1, function cooperatively in phytochrome A signal transduction[J]. Plant Physiology, 2013, 161(1): 291-304.
DOI URL |
[13] |
MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010, 61(14): 4011-4019.
DOI URL |
[14] |
CHEN K M, LI H W, CHEN Y F, et al. TaSCL14, a novel wheat (Triticum aestivum L.) GRAS gene, regulates plant growth, photosynthesis, tolerance to photooxidative stress, and senescence[J]. Journal of Genetics and Genomics, 2015, 42(1): 21-32.
DOI URL |
[15] |
MAYROSE M, EKENGREN S K, MELECH-BONFIL S, et al. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response[J]. Molecular Plant Pathology, 2006, 7(6): 593-604.
DOI PMID |
[16] |
DAY R B, SHIBUYA N, MINAMI E, et al. Identification and characterization of two new members of the GRAS gene family in rice responsive to N-acetylchitooligosaccharide elicitor[J]. Biochimica et Biophysica Acta (BBA) -Gene Structure and Expression, 2003, 1625(3): 261-268.
PMID |
[17] | 林源. 小佛肚竹BvCIGR基因的生物学功能分析及在水稻种质创新的应用[D]. 杭州: 浙江农林大学, 2014. |
LIN Y. Biological function analysis and application in rice germplasm innovation of BvCIGR gene[D]. Hangzhou: Zhejiang A & F University, 2014. (in Chinese with English abstract) | |
[18] |
RAMÍREZ-GONZÁLEZ R H, BORRILL P, LANG D, et al. The transcriptional landscape of polyploid wheat[J]. Science, 2018, 361(6403): eaar6089.
DOI URL |
[19] | 宋婧含. 小麦抗赤霉病候选基因的鉴定及相关分析[D]. 荆州: 长江大学, 2021. |
SONG J H. Identification and correlation analysis of candidate genes for resistance to Fusarium blight in wheat[D]. Jingzhou: Yangtze University, 2021. (in Chinese with English abstract) | |
[20] | 余宇, 王晓杰, 韩青梅, 等. 条锈菌诱导下的小麦叶片总RNA提取方法的比较及LD-PCR扩增[J]. 麦类作物学报, 2007, 27(3): 471-474. |
YU Y, WANG X J, HAN Q M, et al. Comparison of different protocols of extracting total RNA from rust induced wheat leaves and LD-PCR amplification[J]. Journal of Triticeae Crops, 2007, 27(3): 471-474. (in Chinese with English abstract) | |
[21] |
PAOLACCI A R, TANZARELLA O A, PORCEDDU E, et al. Identification and validation of reference genes for quantitative RT-PCR normalization in wheat[J]. BMC Molecular Biology, 2009, 10: 11.
DOI PMID |
[22] | 牛义岭, 姜秀明, 许向阳, 等. 植物转录因子GRAS蛋白的研究进展[J]. 基因组学与应用生物学, 2016, 35(9): 2519-2524. |
NIU Y L, JIANG X M, XU X Y, et al. Research progress of transcription factors GRAS proteins in plant[J]. Genomics and Applied Biology, 2016, 35(9): 2519-2524. (in Chinese with English abstract) | |
[23] | 殷龙飞, 张中保, 于荣, 等. 植物GRAS家族蛋白结构和功能的研究进展[J]. 分子植物育种, 2019, 17(19): 6323-6331. |
YIN L F, ZHANG Z B, YU R, et al. Progress of the structural and functional analysis of GRAS gene in plants[J]. Molecular Plant Breeding, 2019, 17(19): 6323-6331. (in Chinese with English abstract) | |
[24] |
LI G L, YEN Y. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat[J]. Crop Science, 2008, 48(5): 1888-1896.
DOI URL |
[25] |
DING L, XU H, YI H, et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways[J]. PLoS One, 2011, 6(4): e19008.
DOI URL |
[26] | 马信. 小麦抗赤霉病相关基因的克隆及功能分析[D]. 泰安: 山东农业大学, 2014. |
MA X. Cloning and function analysis of FHB resistance-related genes from wheat[D]. Tai’an: Shandong Agricultural University, 2014. (in Chinese with English abstract) | |
[27] |
XIAO J, JIN X, JIA X, et al. Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat Landrace Wangshuibai[J]. BMC Genomics, 2013, 14: 197.
DOI PMID |
[28] | TANABE S, ONODERA H, HARA N, et al. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(1): 145-151. |
[1] | WANG Ben, LI Yuxing, LI Zhe, JIANG Fengyi, HUANG Zhenglai, FAN Yonghui, ZHANG Wenjing, MA Shangyu. Performance of trehalose treatment on yield formation and quality of post-flowering heat-stressed weak gluten wheat Shengxuan No.6 [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 1-9. |
[2] | GUO Chunqian, TIAN Jie. Cloning of garlic hexokinase gene AsHXK2 and expression analysis of its involvement in rhizosphere growth-promoting bacteria alleviating drought stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1925-1934. |
[3] | GUO Han, LU Zhou, XU Feifei, LUO Ming, ZHANG Xu. Leaf area index estimation of winter wheat based on global sensitivity analysis and machine learning [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2020-2031. |
[4] | LIANG Chenggang, WANG Yan, GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong. Identification and bioinformatics analysis of sucrose transporter family FtSUCs in Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1591-1598. |
[5] | HONG Senrong, XIANG Qiongyu, XIE Ying, XIONG Chenlu, XU Chenhui, XU Luke, CHEN Ronghua, CAI Hong. Gene cloning, subcellular localization and tissue expression analysis of tobamovirus multiplication protein 1 gene of Tetrastigma hemsleyanum Diels et Gilg in Huaiyushan [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1193-1204. |
[6] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[7] | WU Yifan, XIA Jie, CHEN Sheng, ZHANG Wei, XIE Jinzhong. Study on suitable ratio for bamboo sawdust and wheat bran composting as substrate of Stropharia rugosoannulata [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1024-1031. |
[8] | CAI Yao, MIAO Yuxuan, WU Hao, WANG Dan. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 582-589. |
[9] | YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598. |
[10] | GONG Weiwei, ZHAO Yichen, LUO Xianlin, YANG Lingling, ZHAO Degang. Expression and promoter sequence analysis of NaD1 gene in Nicotiana alata [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 232-239. |
[11] | WU Hao, ZHANG Xuesong, WANG Dan. Effects of different CO2 concentration and nitrogen rates on photosynthesis and growth of winter wheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2594-2602. |
[12] | ZHANG Qiqi, WAN Yingxiu, CAO Wenxin, LI Yan, LIU Fangfang, LI Yao, ZHANG Pingzhi. Analysis and evaluation of wheat quality traits in Anhui Province, China [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2079-2087. |
[13] | ZHENG Wenyin, ZENG Lingnan, CHENG Ying, HOU Chengzhi, CAO Wenxin, ZHAO Li, YAO Danian. Inheritance of carotenoid content in wheat kernels [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2088-2094. |
[14] | CAI Fangyang, ZHAO Yichen, LI Yi, ZHAO Degang. Identification and analysis of ABC transporters family from Eucommia ulmoides [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1581-1591. |
[15] | WANG Zhangjun, YAO Mingming, YU Huixia, WANG Yanqing, LI Qingfeng, LIU Fenglou, LIU Caixia, ZHANG Shuangxi, ZHANG Xiaogang, LIU Shengxiang. Construction of genetic map and analysis of QTL for grain protein traits using F2∶5 pedigrees derived from Ningchun No.4×Hedong black wheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1367-1378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||