Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (3): 582-589.DOI: 10.3969/j.issn.1004-1524.2022.03.19
• Environmental Science • Previous Articles Next Articles
CAI Yao(), MIAO Yuxuan, WU Hao, WANG Dan(
)
Received:
2021-02-19
Online:
2022-03-25
Published:
2022-03-30
Contact:
WANG Dan
CLC Number:
CAI Yao, MIAO Yuxuan, WU Hao, WANG Dan. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 582-589.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.03.19
处理 Treatment | LAI | SPAD | ||||||
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | 拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | |
CK | 2.09±0.11 b | 2.89±0.46 a | 3.23±0.55 b | 2.15±0.14 a | 48.13±2.72 a | 55.61±2.45 a | 57.31±2.77 b | 49.08±3.45 a |
T | 2.30±0.21 a | 3.05±0.29 a | 3.73±0.34 a | 1.99±0.31 a | 47.65±3.71 a | 58.29±4.34 a | 61.06±3.53 a | 42.73±2.70 b |
Table 1 LAI and SPAD value of winter wheat under different treatments
处理 Treatment | LAI | SPAD | ||||||
---|---|---|---|---|---|---|---|---|
拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | 拔节期 Jointing stage | 孕穗-抽穗期 Booting-heading stage | 灌浆期 Filling stage | 乳熟期 Milk-ripening stage | |
CK | 2.09±0.11 b | 2.89±0.46 a | 3.23±0.55 b | 2.15±0.14 a | 48.13±2.72 a | 55.61±2.45 a | 57.31±2.77 b | 49.08±3.45 a |
T | 2.30±0.21 a | 3.05±0.29 a | 3.73±0.34 a | 1.99±0.31 a | 47.65±3.71 a | 58.29±4.34 a | 61.06±3.53 a | 42.73±2.70 b |
Fig.1 Spectral reflectance of winter wheat at different growing stages A,Jointing stage; B, Booting-heading stage; C, Filling stage; D, Milk-ripening stage. The same as below.
生育期 Growing stage | λr/nm | Dr/10-2 | SDr/10-2 | |||
---|---|---|---|---|---|---|
CK | T | CK | T | CK | T | |
拔节期Jointing stage | 732 | 732 | 0.74 | 0.69 | 31.06 | 28.87 |
孕穗-抽穗期Booting-heading stage | 736 | 736 | 0.97 | 0.95 | 38.45 | 37.21 |
灌浆期Filling stage | 735 | 736 | 0.94 | 0.83 | 38.36 | 33.47 |
乳熟期Milk-ripening stage | 718 | 709 | 0.50 | 0.41 | 25.31 | 20.81 |
Table 2 Red edge parameters of winter wheat at different growing stages
生育期 Growing stage | λr/nm | Dr/10-2 | SDr/10-2 | |||
---|---|---|---|---|---|---|
CK | T | CK | T | CK | T | |
拔节期Jointing stage | 732 | 732 | 0.74 | 0.69 | 31.06 | 28.87 |
孕穗-抽穗期Booting-heading stage | 736 | 736 | 0.97 | 0.95 | 38.45 | 37.21 |
灌浆期Filling stage | 735 | 736 | 0.94 | 0.83 | 38.36 | 33.47 |
乳熟期Milk-ripening stage | 718 | 709 | 0.50 | 0.41 | 25.31 | 20.81 |
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R777 | 0.63** | y=4.964+0.458 5ln x4.964 | 0.43** | 0.51 | 0.32** | 0.59 |
Dr | 0.70** | y=910.1x2+192.3x+1.16 | 0.52** | 0.46 | 0.40** | 0.56 |
SDr | 0.65** | y=5.748x+0.850 4 | 0.46** | 0.50 | 0.35** | 0.58 |
SDr/SDy | 0.81** | y=3.96×10-3x2-8.60×10-2x+1.93 | 0.78** | 0.32 | 0.66** | 0.42 |
SDr/SDb | 0.68** | y=7.90×10-4x2+5.20×10-2x+1.52 | 0.52** | 0.47 | 0.37** | 0.57 |
SDr-SDy | 0.64** | y=1.150x2+4.600x+1.042 | 0.45** | 0.50 | 0.35** | 0.58 |
SDr-SDb | 0.62** | y=1.610x2+4.800x+1.092 | 0.48** | 0.49 | 0.37** | 0.57 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=18.90x2-51.08x+36.30 | 0.47** | 0.49 | 0.34** | 0.59 |
Table 3 Establishment and validation of LAI estimation model
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R777 | 0.63** | y=4.964+0.458 5ln x4.964 | 0.43** | 0.51 | 0.32** | 0.59 |
Dr | 0.70** | y=910.1x2+192.3x+1.16 | 0.52** | 0.46 | 0.40** | 0.56 |
SDr | 0.65** | y=5.748x+0.850 4 | 0.46** | 0.50 | 0.35** | 0.58 |
SDr/SDy | 0.81** | y=3.96×10-3x2-8.60×10-2x+1.93 | 0.78** | 0.32 | 0.66** | 0.42 |
SDr/SDb | 0.68** | y=7.90×10-4x2+5.20×10-2x+1.52 | 0.52** | 0.47 | 0.37** | 0.57 |
SDr-SDy | 0.64** | y=1.150x2+4.600x+1.042 | 0.45** | 0.50 | 0.35** | 0.58 |
SDr-SDb | 0.62** | y=1.610x2+4.800x+1.092 | 0.48** | 0.49 | 0.37** | 0.57 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=18.90x2-51.08x+36.30 | 0.47** | 0.49 | 0.34** | 0.59 |
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R770 | 0.71** | y=-191.7x2+213.0x+0.813 0 | 0.56** | 4.37 | 0.47** | 5.56 |
λr | 0.62** | y=2.030×10-2x2-28.76x+1.024×104 | 0.52** | 4.61 | 0.47** | 5.55 |
Dr | 0.78** | y=-5.151×104x2+2.883×103x+33.83 | 0.60** | 4.21 | 0.63** | 4.61 |
SDr | 0.76** | y=62.16x+32.72 | 0.56** | 4.40 | 0.59** | 4.86 |
SDr/SDy | 0.70** | y=2.07×10-2x2-1.17×10-1x+39.28 | 0.50** | 4.67 | 0.58** | 4.95 |
SDr/SDb | 0.67** | y=-9.720×10-3x2+1.003x+38.48 | 0.45** | 4.93 | 0.42** | 5.80 |
SDr-SDy | 0.76** | y=57.81x+33.61 | 0.56** | 4.38 | 0.60** | 4.80 |
SDr-SDb | 0.76** | y=60.93x+34.34 | 0.57** | 4.31 | 0.61** | 4.77 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=170.6x2-462.8x+357.9 | 0.43** | 5.00 | 0.45** | 5.63 |
Table 4 Establishment and validation of SPAD value estimation model
x | r | 回归方程 Regression equation | 建模集Modeling set | 验证集Validation set | ||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
R770 | 0.71** | y=-191.7x2+213.0x+0.813 0 | 0.56** | 4.37 | 0.47** | 5.56 |
λr | 0.62** | y=2.030×10-2x2-28.76x+1.024×104 | 0.52** | 4.61 | 0.47** | 5.55 |
Dr | 0.78** | y=-5.151×104x2+2.883×103x+33.83 | 0.60** | 4.21 | 0.63** | 4.61 |
SDr | 0.76** | y=62.16x+32.72 | 0.56** | 4.40 | 0.59** | 4.86 |
SDr/SDy | 0.70** | y=2.07×10-2x2-1.17×10-1x+39.28 | 0.50** | 4.67 | 0.58** | 4.95 |
SDr/SDb | 0.67** | y=-9.720×10-3x2+1.003x+38.48 | 0.45** | 4.93 | 0.42** | 5.80 |
SDr-SDy | 0.76** | y=57.81x+33.61 | 0.56** | 4.38 | 0.60** | 4.80 |
SDr-SDb | 0.76** | y=60.93x+34.34 | 0.57** | 4.31 | 0.61** | 4.77 |
(SDr-SDb)/(SDr+SDb) | -0.60** | y=170.6x2-462.8x+357.9 | 0.43** | 5.00 | 0.45** | 5.63 |
[1] | IPCC. Intergovernmental panel on climate change[M]// Climate change 2014: impacts, adaptation and vulnerability:contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[2] | 王国伟, 李阳, 王嘉欣. 不同施肥模式对春玉米生长特性及氮素利用率的影响[J]. 西南农业学报, 2019, 32(9): 2119-2125. |
WANG G W, LI Y, WANG J X. Effects of different fertilization patterns on growth characteristic and nitrogen use efficiency of corn[J]. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 2119-2125. (in Chinese with English abstract) | |
[3] | 郝学明, 王响铃, 宋柏权, 等. 甜菜叶片SPAD值和光合色素的相关性研究[J]. 农学学报, 2019, 9(10): 65-70. |
HAO X M, WANG X L, SONG B Q, et al. Correlation analysis of SPAD value and photosynthetic pigment in sugarbeet leaves[J]. Journal of Agriculture, 2019, 9(10): 65-70. (in Chinese with English abstract) | |
[4] |
CURTIS T, HALFORD N G. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety[J]. The Annals of Applied Biology, 2014, 164(3): 354-372.
DOI URL |
[5] | 牛胤全, 史雨刚, 汤小莎, 等. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响[J]. 应用生态学报, 2020, 31(7): 2407-2414. |
NIU Y Q, SHI Y G, TANG X S, et al. Effects of high CO2 concentration, drought, and their interaction on different stay-green wheat seedlings[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2407-2414. (in Chinese with English abstract) | |
[6] | 范金杰, 俞杨浏, 左强, 等. 大气CO2浓度升高对小麦蒸腾耗水与根系吸水的影响[J]. 农业工程学报, 2020, 36(3): 92-98. |
FAN J J, YU Y L, ZUO Q, et al. Effects of elevated CO2 concentration on transpiration and root-water-uptake of wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 92-98. (in Chinese with English abstract) | |
[7] | 赵小敏, 孙小香, 王芳东, 等. 水稻高光谱遥感监测研究综述[J]. 江西农业大学学报, 2019, 41(1): 1-12. |
ZHAO X M, SUN X X, WANG F D, et al. A summary of the researches on hyperspectral remote sensing monitoring of rice[J]. Acta Agriculturae Universitatis Jiangxiensis, 2019, 41(1): 1-12. (in Chinese with English abstract) | |
[8] | 杨福芹, 冯海宽, 李振海, 等. 基于高光谱的苹果叶片叶绿素含量估算[J]. 浙江农业学报, 2017, 29(10): 1742-1748. |
YANG F Q, FENG H K, LI Z H, et al. Estimation of apple leaf chlorophyll content based on hyperspectral data[J]. Acta Agriculturae Zhejiangensis, 2017, 29(10): 1742-1748. (in Chinese with English abstract) | |
[9] | 孙华林, 耿石英, 王小燕, 等. 晚播条件下基于高光谱的小麦叶面积指数估算方法[J]. 光谱学与光谱分析, 2019, 39(4): 1199-1206. |
SUN H L, GENG S Y, WANG X Y, et al. Estimation method of wheat leaf area index based on hyperspectral under late sowing conditions[J]. Spectroscopy and Spectral Analysis, 2019, 39(4): 1199-1206. (in Chinese with English abstract) | |
[10] | 陆锡昆, 罗亚辉, 蒋蘋, 等. 基于高光谱的油茶籽含水量检测方法[J]. 浙江农业学报, 2020, 32(7): 1302-1310. |
LU X K, LUO Y H, JIANG P, et al. Detection of water content in Camellia seeds based on hyperspectrum[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1302-1310. (in Chinese with English abstract) | |
[11] | 崔怀洋, 徐晖, 张伟, 等. 基于高光谱的倒伏冬小麦产量预测模型研究[J]. 麦类作物学报, 2015, 35(8): 1155-1160. |
CUI H Y, XU H, ZHANG W, et al. Yield estimation model of lodging winter wheat based on hyperspectral remote sensing[J]. Journal of Triticeae Crops, 2015, 35(8): 1155-1160. (in Chinese with English abstract) | |
[12] | 尼加提·卡斯木, 师庆东, 王敬哲, 等. 基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算[J]. 农业工程学报, 2017, 33(22): 208-216. |
NIJAT K, SHI Q D, WANG J Z, et al. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 208-216. (in Chinese with English abstract) | |
[13] | 吴启侠, 晏军, 朱建强, 等. 花后浅地下水埋深对小麦高光谱特征的影响及叶绿素估算模型[J]. 灌溉排水学报, 2018, 37(9): 29-35. |
WU Q X, YAN J, ZHU J Q, et al. Effects of the depth of shallow groundwater table during post-anthesis stage on hyperspectral characteristics of winter wheat as well as model for predicting leaf chlorophyll content[J]. Journal of Irrigation and Drainage, 2018, 37(9): 29-35. (in Chinese with English abstract) | |
[14] | 王晓星, 常庆瑞, 刘梦云, 等. 冬小麦冠层水平叶绿素含量的高光谱估测[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2): 48-54. |
WANG X X, CHANG Q R, LIU M Y, et al. Hyper-spectral estimation of chlorophyll content in canopy of winter wheat[J]. Journal of Northwest A & F University (Natural Science Edition), 2016, 44(2): 48-54. (in Chinese with English abstract) | |
[15] | 陶惠林, 冯海宽, 杨贵军, 等. 基于无人机成像高光谱影像的冬小麦LAI估测[J]. 农业机械学报, 2020, 51(1): 176-187. |
TAO H L, FENG H K, YANG G J, et al. Leaf area index estimation of winter wheat based on UAV imaging hyperspectral imagery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 176-187. (in Chinese with English abstract) | |
[16] | 王卓卓, 何英彬, 罗善军, 等. 基于冠层高光谱数据与马氏距离的马铃薯品种识别[J]. 江苏农业学报, 2018, 34(5): 1036-1041. |
WANG Z Z, HE Y B, LUO S J, et al. Variety identification of potatoes based on canopy hyperspectral data and Mahalanobis distance[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(5): 1036-1041. (in Chinese with English abstract) | |
[17] | 刘二华, 周广胜, 周莉. 不同干旱条件下夏玉米全生育期冠层吸收光合有效辐射比的高光谱遥感反演[J]. 应用生态学报, 2019, 30(6): 2021-2029. |
LIU E H, ZHOU G S, ZHOU L. Fraction of absorbed photosynthetically active radiation over summer maize canopy estimated by hyperspectral remote sensing under different drought conditions[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 2021-2029. (in Chinese with English abstract) | |
[18] | 贺婷, 李建东, 刘桂鹏, 等. 基于高光谱遥感的玉米全氮含量估测模型[J]. 沈阳农业大学学报, 2016, 47(3): 257-265. |
HE T, LI J D, LIU G P, et al. Estimation models of maize total nitrogen content based on hyperspectral remote sensing[J]. Journal of Shenyang Agricultural University, 2016, 47(3): 257-265. (in Chinese with English abstract) | |
[19] |
SHI T Z, WANG J J, LIU H Z, et al. Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance[J]. International Journal of Remote Sensing, 2015, 36(18): 4652-4667.
DOI URL |
[20] | 刘昌华, 方征, 陈志超, 等. ASD Field Spec3野外便携式高光谱仪诊断冬小麦氮营养[J]. 农业工程学报, 2018, 34(19): 162-169. |
LIU C H, FANG Z, CHEN Z C, et al. Nitrogen nutrition diagnosis of winter wheat based on ASD Field Spec3[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(19): 162-169. (in Chinese with English abstract) | |
[21] | 耿石英, 孙华林, 王小燕, 等. 不同氮肥处理下小麦冠层和叶片光谱特征及产量分析[J]. 光谱学与光谱分析, 2018, 38(11): 3534-3540. |
GENG S Y, SUN H L, WANG X Y, et al. Relationships between characteristics of wheat canopy and leaf spectral reflectance and yield under different nitrogen treatments[J]. Spectroscopy and Spectral Analysis, 2018, 38(11): 3534-3540. (in Chinese with English abstract) | |
[22] | 刘佳, 王利民, 杨福刚, 等. 基于高光谱微分指数监测春玉米大斑病的研究[J]. 中国农学通报, 2019, 35(6): 143-150. |
LIU J, WANG L M, YANG F G, et al. Spring corn leaf blight monitoring based on hyperspectral derivative index[J]. Chinese Agricultural Science Bulletin, 2019, 35(6): 143-150. (in Chinese with English abstract) | |
[23] |
ZHU J Y, YU Q, ZHU H, et al. Response of dust particle pollution and construction of a leaf dust deposition prediction model based on leaf reflection spectrum characteristics[J]. Environmental Science and Pollution Research International, 2019, 26(36): 36764-36775.
DOI URL |
[24] | 任哲, 陈怀亮, 王连喜, 等. 利用交叉验证的小麦LAI反演模型研究[J]. 国土资源遥感, 2015, 27(4): 34-40. |
REN Z, CHEN H L, WANG L X, et al. Research on inversion model of wheat LAI using cross-validation[J]. Remote Sensing for Land & Resources, 2015, 27(4): 34-40. (in Chinese with English abstract) | |
[25] |
ZHU J Y, ZHANG X N, HE W J, et al. Response of plant reflectance spectrum to simulated dust deposition and its estimation model[J]. Scientific Reports, 2020, 10: 15803.
DOI URL |
[26] | 贺可勋, 赵书河, 来建斌, 等. 水分胁迫对小麦光谱红边参数和产量变化的影响[J]. 光谱学与光谱分析, 2013, 33(8): 2143-2147. |
HE K X, ZHAO S H, LAI J B, et al. Effects of water stress on red-edge parameters and yield in wheat cropping[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2143-2147. (in Chinese with English abstract) | |
[27] | 史冰全, 张晓丽, 白雪琪, 等. 基于“三边”参数的油松林叶绿素估算模型[J]. 东北林业大学学报, 2015, 43(5): 80-83. |
SHI B Q, ZHANG X L, BAI X Q, et al. Chlorophyll estimation model of Pinus tabulaeformis based on “Sanbian” parameters[J]. Journal of Northeast Forestry University, 2015, 43(5): 80-83. (in Chinese with English abstract) | |
[28] | 李军玲, 彭记永. 不同生育时期冬小麦叶面积指数地面高光谱遥感模型研究[J]. 麦类作物学报, 2018, 38(8): 979-987. |
LI J L, PENG J Y. Estimation of winter wheat LAI at different growth stages based on canopy hyperspectral remote sensing system[J]. Journal of Triticeae Crops, 2018, 38(8): 979-987. (in Chinese with English abstract) | |
[29] |
OMMEN O E, DONNELLY A, VANHOUTVIN S, et al. Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ‘ESPACE-wheat’ project[J]. European Journal of Agronomy, 1999, 10(3/4): 197-203.
DOI URL |
[30] |
GRAY S B, DERMODY O, DELUCIA E H. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3[J]. Journal of Experimental Botany, 2010, 61(15): 4413-4422.
DOI URL |
[1] | WANG Jia, MU Ruirui, YANG Qiaoqiao, LIU Wei, ZHANG Yuehe, KANG Jianhong. Effects of potassium application rate on chlorophyll fluorescence characteristics and yield of spring maize in Ningxia under integrated drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1347-1357. |
[2] | ZHANG Yuxun, WANG Lei, QU Xiangning, CAO Yuan, WU Mengyao, YU Ruixin, SUN Yuan. Application research of GF-1/WFV data in estimation of maize leaf area index [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 861-872. |
[3] | YAO Zhao, WANG Chongyang, CUI Jing. Effect of nitrogen application amount on grain filling characteristics of winter wheat at different panicle positions under drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 576-585. |
[4] | WANG Tangang, SUN Ting, WANG Jichuan, LI Huiqin, GAO Zhen, SHI Yuanqiang. Effects of sowing date and density on population structure and lodging resistance of winter wheat under drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 193-202. |
[5] | XIAO Zhiyun, WANG Yining. Hyperspectral retrieval for chlorophyll contents of Syringa oblata leaves based on RF-VR [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2164-2173. |
[6] | QIAN Jiawei, LIU Xiaoqing, ZHANG Jingjing, ZHOU Weihong, LI Jianlong. Constructions of hyperspectral remote sensing monitoring models for heavy metal contents in farmland soil in Zhangjiagang City [J]. , 2020, 32(8): 1437-1445. |
[7] | LU Xikun, LUO Yahui, JIANG Pin, HU Wenwu. Detection of water content in camellia seeds based on hyperspectrum [J]. , 2020, 32(7): 1302-1310. |
[8] | YU Wenjie, WANG Caixia, QIAO Lu, WANG Songlei, HE Xiaoguang. Construction of PLSR prediction model for detecting color of Jingyuan yellow beef by hyperspectral technique [J]. , 2020, 32(3): 527-533. |
[9] | SONG Chunyu, GAN Shu, YUAN Xiping, HU Lin, LI Yan, YAN Xinfang. Hyperspectral characteristics of typical tree vegetation in central Yunnan [J]. , 2020, 32(11): 1978-1986. |
[10] | FANG Xiang, JIN Xiu, ZHU Juanjuan, LI Shaowen. Prediction of soil available nitrogen content based on visible and near infrared spectroscopy preprocess and modeling [J]. , 2019, 31(9): 1523-1530. |
[11] | MENG Qinglong, ZHANG Yan, SHANG Jing. Nondestructive recognition of surface defect on kiwifruits using hyperspectral imaging technology [J]. , 2019, 31(8): 1372-1378. |
[12] | FANG Fang, HE Xuchen, ZHANG Zhihao, ZHANG Qin, GUAN Yajing, HU Jin, HU Weimin. Response mechanism and stress resistance of maize inbred lines to high temperature stress at seedling stage [J]. , 2019, 31(7): 1045-1056. |
[13] | WANG Xiaoxuan, MENG Qingyan, ZHANG Haixiang, WEI Xiangqin, YANG Zenan. Inversion of maize and wheat leaf area index based on particle swarm optimization neural network model [J]. , 2019, 31(7): 1170-1176. |
[14] | WANG Meiling, JIAO Linlin, WANG Xiaohong, WU Bing, XIAO Xingxing. Differences in spectral characteristics of typical vegetation in Caofeidian wetland [J]. , 2019, 31(6): 963-969. |
[15] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||