Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (11): 2164-2173.DOI: 10.3969/j.issn.1004-1524.2021.11.19
• Biosystems Engineering • Previous Articles Next Articles
Received:
2020-08-25
Online:
2021-11-25
Published:
2021-11-26
CLC Number:
XIAO Zhiyun, WANG Yining. Hyperspectral retrieval for chlorophyll contents of Syringa oblata leaves based on RF-VR[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2164-2173.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.11.19
Fig.1 Hyperspectral imaging monitoring system 1, Leaf sample; 2, 3, Light source; 4, Storage platform; 5, The Specim IQ hyperspectral camera; 6, Transmission data line; 7, Computer; 8, Tripod.
样本集 Samples set | 样本数 Samples number | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard derivation |
---|---|---|---|---|---|
总样本Overall | 200 | 44.3 | 18.3 | 31.55 | 7.085 2 |
建模集Modeling set | 160 | 44.3 | 18.3 | 30.09 | 7.167 7 |
验证集Validation set | 40 | 43.6 | 19.7 | 28.87 | 6.770 7 |
Table 1 Statistics and division of samples SPAD value
样本集 Samples set | 样本数 Samples number | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard derivation |
---|---|---|---|---|---|
总样本Overall | 200 | 44.3 | 18.3 | 31.55 | 7.085 2 |
建模集Modeling set | 160 | 44.3 | 18.3 | 30.09 | 7.167 7 |
验证集Validation set | 40 | 43.6 | 19.7 | 28.87 | 6.770 7 |
光谱 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 主成分数 Principal component | 建模集 | 验证集 |
---|---|---|---|---|---|
Rraw | FULL | 204 | 10 | 0.846 6 | 0.896 9 |
RSG-SD | 204 | 7 | 0.865 2 | 0.913 8 | |
Rraw | CA | 31 | 8 | 0.857 9 | 0.893 6 |
RSG-SD | 31 | 18 | 0.885 7 | 0.911 0 | |
Rraw | RF | 49 | 10 | 0.899 7 | 0.921 1 |
RSG-SD | 35 | 10 | 0.944 2 | 0.951 4 | |
Rraw | CARS | 48 | 14 | 0.857 7 | 0.924 3 |
RSG-SD | 29 | 9 | 0.910 6 | 0.928 8 | |
Rraw | UVE | 25 | 15 | 0.854 2 | 0.872 7 |
RSG-SD | 40 | 7 | 0.906 4 | 0.927 8 | |
Rraw | MWPLS | 190 | 8 | 0.856 9 | 0.897 0 |
RSG-SD | 190 | 5 | 0.905 2 | 0.927 7 |
Table 2 Accuracies of PLSR modeling with different variable selection methods
光谱 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 主成分数 Principal component | 建模集 | 验证集 |
---|---|---|---|---|---|
Rraw | FULL | 204 | 10 | 0.846 6 | 0.896 9 |
RSG-SD | 204 | 7 | 0.865 2 | 0.913 8 | |
Rraw | CA | 31 | 8 | 0.857 9 | 0.893 6 |
RSG-SD | 31 | 18 | 0.885 7 | 0.911 0 | |
Rraw | RF | 49 | 10 | 0.899 7 | 0.921 1 |
RSG-SD | 35 | 10 | 0.944 2 | 0.951 4 | |
Rraw | CARS | 48 | 14 | 0.857 7 | 0.924 3 |
RSG-SD | 29 | 9 | 0.910 6 | 0.928 8 | |
Rraw | UVE | 25 | 15 | 0.854 2 | 0.872 7 |
RSG-SD | 40 | 7 | 0.906 4 | 0.927 8 | |
Rraw | MWPLS | 190 | 8 | 0.856 9 | 0.897 0 |
RSG-SD | 190 | 5 | 0.905 2 | 0.927 7 |
预处理 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 建模集 | 验证集 |
---|---|---|---|---|
Rraw | FULL | 204 | 0.919 3 | 0.952 5 |
RSG-SD | 204 | 0.949 7 | 0.953 4 | |
Rraw | CA | 31 | 0.853 1 | 0.899 8 |
RSG-SD | 31 | 0.949 3 | 0.942 0 | |
Rraw | RF | 49 | 0.919 3 | 0.965 8 |
RSG-SD | 35 | 0.952 9 | 0.964 3 | |
Rraw | CARS | 48 | 0.866 4 | 0.957 8 |
RSG-SD | 29 | 0.940 5 | 0.954 6 | |
Rraw | UVE | 25 | 0.881 3 | 0.947 7 |
RSG-SD | 40 | 0.944 8 | 0.960 3 | |
Rraw | MWPLS | 190 | 0.926 1 | 0.953 2 |
RSG-SD | 190 | 0.945 9 | 0.948 6 |
Table 3 Accuracies of VR modeling with different variable selection methods
预处理 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 建模集 | 验证集 |
---|---|---|---|---|
Rraw | FULL | 204 | 0.919 3 | 0.952 5 |
RSG-SD | 204 | 0.949 7 | 0.953 4 | |
Rraw | CA | 31 | 0.853 1 | 0.899 8 |
RSG-SD | 31 | 0.949 3 | 0.942 0 | |
Rraw | RF | 49 | 0.919 3 | 0.965 8 |
RSG-SD | 35 | 0.952 9 | 0.964 3 | |
Rraw | CARS | 48 | 0.866 4 | 0.957 8 |
RSG-SD | 29 | 0.940 5 | 0.954 6 | |
Rraw | UVE | 25 | 0.881 3 | 0.947 7 |
RSG-SD | 40 | 0.944 8 | 0.960 3 | |
Rraw | MWPLS | 190 | 0.926 1 | 0.953 2 |
RSG-SD | 190 | 0.945 9 | 0.948 6 |
[1] |
XUE L H, YANG L Z. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1):97-106.
DOI URL |
[2] |
LIMANTARA L, DETTLING M, INDRAWATI R, et al. Analysis on the chlorophyll content of commercial green leafy vegetables[J]. Procedia Chemistry, 2015, 14:225-231.
DOI URL |
[3] | 董晶晶, 王力, 牛铮. 植被冠层水平叶绿素含量的高光谱估测[J]. 光谱学与光谱分析, 2009, 29(11):3003-3006. |
DONG J J, WANG L, NIU Z. Estimation of canopy chlorophyll content using hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2009, 29(11):3003-3006.(in Chinese with English abstract) | |
[4] | 关锦毅, 郝再彬, 张达, 等. 叶绿素提取与检测及生物学功效的研究进展[J]. 东北农业大学学报, 2009, 40(12):130-134. |
GUAN J Y, HAO Z B, ZHANG D, et al. A review on the extraction, detection and biological function of chlorophyll[J]. Journal of Northeast Agricultural University, 2009, 40(12):130-134.(in Chinese with English abstract) | |
[5] | 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090. |
ZHANG B. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090.(in Chinese with English abstract) | |
[6] | 杨峰, 范亚民, 李建龙, 等. 高光谱数据估测稻麦叶面积指数和叶绿素密度[J]. 农业工程学报, 2010, 26(2):237-243. |
YANG F, FAN Y M, LI J L, et al. Estimating LAI and CCD of rice and wheat using hyperspectral remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(2):237-243.(in Chinese with English abstract) | |
[7] | 唐延林, 黄敬峰, 王秀珍, 等. 玉米叶片高光谱特征及与叶绿素、类胡萝卜素相关性的研究[J]. 玉米科学, 2008, 16(2):71-76. |
TANG Y L, HUANG J F, WANG X Z, et al. Study on hyper spectral characteristics of corn leaves and their correlation to chrolophyll and carotenoid[J]. Journal of Maize Sciences, 2008, 16(2):71-76.(in Chinese with English abstract) | |
[8] | 王强, 易秋香, 包安明, 等. 基于高光谱反射率的棉花冠层叶绿素密度估算[J]. 农业工程学报, 2012, 28(15):125-132. |
WANG Q, YI Q X, BAO A M, et al. Estimating chlorophyll density of cotton canopy by hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(15):125-132.(in Chinese with English abstract) | |
[9] | 朱亚星, 于雷, 洪永胜, 等. 土壤有机质高光谱特征与波长变量优选方法[J]. 中国农业科学, 2017, 50(22):4325-4337. |
ZHU Y X, YU L, HONG Y S, et al. Hyperspectral features and wavelength variables selection methods of soil organic matter[J]. Scientia Agricultura Sinica, 2017, 50(22):4325-4337.(in Chinese with English abstract) | |
[10] |
LI Y K, JING J. A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130:45-49.
DOI URL |
[11] | 赵艳茹, 余克强, 李晓丽, 等. 基于高光谱成像的南瓜叶片叶绿素分布可视化研究[J]. 光谱学与光谱分析, 2014, 34(5):1378-1382. |
ZHAO Y R, YU K Q, LI X L, et al. Study on SPAD visualization of pumpkin leaves based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(5):1378-1382.(in Chinese with English abstract) | |
[12] | 邵园园, 王永贤, 玄冠涛, 等. 基于高光谱成像的肥城桃品质可视化分析与成熟度检测[J]. 农业机械学报, 2020, 51(8):344-350. |
SHAO Y Y, WANG Y X, XUAN G T, et al. Visual detection of SSC and firmness and maturity prediction for Feicheng peach by using hyperspectral imaging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8):344-350.(in Chinese with English abstract) | |
[13] | 龙燕, 连雅茹, 马敏娟, 等. 基于高光谱技术和改进型区间随机蛙跳算法的番茄硬度检测[J]. 农业工程学报, 2019, 35(13):270-276. |
LONG Y, LIAN Y R, MA M J, et al. Detection of tomato hardness based on hyperspectral technology and modified interval random frog algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13):270-276.(in Chinese with English abstract) | |
[14] | 孙红, 刘宁, 吴莉, 等. 高光谱成像的马铃薯叶片含水率分布可视化[J]. 光谱学与光谱分析, 2019, 39(3):910-916. |
SUN H, LIU N, WU L, et al. Visualization of water content distribution in potato leaves based on hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2019, 39(3):910-916.(in Chinese with English abstract) | |
[15] | 孙红, 郑涛, 刘宁, 等. 高光谱图像检测马铃薯植株叶绿素含量垂直分布[J]. 农业工程学报, 2018, 34(1):149-156. |
SUN H, ZHENG T, LIU N, et al. Vertical distribution of chlorophyll in potato plants based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1):149-156.(in Chinese with English abstract) | |
[16] |
GATIUS F, MIRALBÉS C, DAVID C, et al. Comparison of CCA and PLS to explore and model NIR data[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 164:76-82.
DOI URL |
[17] |
KAWAMURA K, TSUJIMOTO Y, RABENARIVO M, et al. Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar[J]. Remote Sensing, 2017, 9(10):1081.
DOI URL |
[18] |
GENISHEVA Z, QUINTELAS C, MESQUITA D P, et al. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR)[J]. Food Chemistry, 2018, 246:172-178.
DOI URL |
[19] | 陈凯, 朱钰. 机器学习及其相关算法综述[J]. 统计与信息论坛, 2007, 22(5):105-112. |
CHEN K, ZHU Y. A summary of machine learning and related algorithms[J]. Statistics & Information Forum, 2007, 22(5):105-112.(in Chinese with English abstract) | |
[20] | 金秀, 朱先志, 李绍稳, 等. 基于梯度提升树的土壤速效磷高光谱回归预测方法[J]. 激光与光电子学进展, 2019, 56(13):141-150. |
JIN X, ZHU X Z, LI S W, et al. Predicting soil available phosphorus by hyperspectral regression method based on gradient boosting decision tree[J]. Laser & Optoelectronics Progress, 2019, 56(13):141-150.(in Chinese with English abstract) | |
[21] | 刘茂成, 李志洪. 植物叶绿素光谱测定仪的原理与设计[J]. 中国农机化学报, 2017, 38(1):74-79. |
LIU M C, LI Z H. Principle and design of chlorophyll spectrometry meter for plants[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(1):74-79.(in Chinese with English abstract) | |
[22] | 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9):2800-2806. |
DIWU P Y, BIAN X H, WANG Z F, et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis, 2019, 39(9):2800-2806.(in Chinese with English abstract) | |
[23] | 田安红, 熊黑钢, 赵俊三, 等. 分数阶微分对盐渍土野外光谱预处理精度提升的机理分析[J]. 光谱学与光谱分析, 2019, 39(8):2495-2500. |
TIAN A H, XIONG H G, ZHAO J S, et al. Mechanism improvement for pretreatment accuracy of field spectra of saline soil using fractional differential algorithm[J]. Spectroscopy and Spectral Analysis, 2019, 39(8):2495-2500.(in Chinese with English abstract) | |
[24] | 陈立旦, 赵艳茹. 可见-近红外光谱联合随机蛙跳算法检测生物柴油含水量[J]. 农业工程学报, 2014, 30(8):168-173. |
CHEN L D, ZHAO Y R. Measurement of water content in biodiesel using visible and near infrared spectroscopy combined with Random-Frog algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8):168-173.(in Chinese with English abstract) | |
[25] |
YUN Y H, LI H D, WOOD L R E, et al. An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2013, 111:31-36.
DOI URL |
[26] | 葛翔宇, 丁建丽, 王敬哲, 等. 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算[J]. 光学学报, 2018, 38(10):393-400. |
GE X Y, DING J L, WANG J Z, et al. Estimation of soil moisture content based on competitive adaptive reweighted sampling algorithm coupled with machine learning[J]. Acta Optica Sinica, 2018, 38(10):393-400.(in Chinese with English abstract) | |
[27] | 李盛芳, 贾敏智, 董大明. 随机森林算法的水果糖分近红外光谱测量[J]. 光谱学与光谱分析, 2018, 38(6):1766-1771. |
LI S F, JIA M Z, DONG D M. Fast measurement of sugar in fruits using near infrared spectroscopy combined with random forest algorithm[J]. Spectroscopy and Spectral Analysis, 2018, 38(6):1766-1771.(in Chinese with English abstract) |
[1] | WANG Jia, MU Ruirui, YANG Qiaoqiao, LIU Wei, ZHANG Yuehe, KANG Jianhong. Effects of potassium application rate on chlorophyll fluorescence characteristics and yield of spring maize in Ningxia under integrated drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1347-1357. |
[2] | FANG Fang, HE Xuchen, ZHANG Zhihao, ZHANG Qin, GUAN Yajing, HU Jin, HU Weimin. Response mechanism and stress resistance of maize inbred lines to high temperature stress at seedling stage [J]. , 2019, 31(7): 1045-1056. |
[3] | YANG Fuqin, FENG Haikuan, LI Zhenhai, YANG Guijun, DAI Huayang. Estimation of apple leaf chlorophyll content based on hyperspectral data [J]. , 2017, 29(10): 1742-1748. |
[4] | ZHANG Wanwan,YANG Keming, WANG Guoping, LIU Erxiong, LIU Cong. Study on GABP inversing modeling method of corn leaf chlorophyll content based on EMD and spectral derivative method [J]. , 2016, 28(8): 1297-. |
[5] | LI Yongping;GUAN Yajing;MA Wenguang;ZHENG Yunye;HU Jin;*. Effects of seed pelleting with magnetic powder on tobacco seed germination and seedling growth [J]. , 2011, 23(6): 0-1077. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||