Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (11): 2164-2173.DOI: 10.3969/j.issn.1004-1524.2021.11.19
• Biosystems Engineering • Previous Articles Next Articles
Received:2020-08-25
Online:2021-11-25
Published:2021-11-26
CLC Number:
XIAO Zhiyun, WANG Yining. Hyperspectral retrieval for chlorophyll contents of Syringa oblata leaves based on RF-VR[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2164-2173.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.11.19
Fig.1 Hyperspectral imaging monitoring system 1, Leaf sample; 2, 3, Light source; 4, Storage platform; 5, The Specim IQ hyperspectral camera; 6, Transmission data line; 7, Computer; 8, Tripod.
| 样本集 Samples set | 样本数 Samples number | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard derivation |
|---|---|---|---|---|---|
| 总样本Overall | 200 | 44.3 | 18.3 | 31.55 | 7.085 2 |
| 建模集Modeling set | 160 | 44.3 | 18.3 | 30.09 | 7.167 7 |
| 验证集Validation set | 40 | 43.6 | 19.7 | 28.87 | 6.770 7 |
Table 1 Statistics and division of samples SPAD value
| 样本集 Samples set | 样本数 Samples number | 最大值 Maximum | 最小值 Minimum | 平均值 Mean | 标准差 Standard derivation |
|---|---|---|---|---|---|
| 总样本Overall | 200 | 44.3 | 18.3 | 31.55 | 7.085 2 |
| 建模集Modeling set | 160 | 44.3 | 18.3 | 30.09 | 7.167 7 |
| 验证集Validation set | 40 | 43.6 | 19.7 | 28.87 | 6.770 7 |
| 光谱 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 主成分数 Principal component | 建模集 | 验证集 |
|---|---|---|---|---|---|
| Rraw | FULL | 204 | 10 | 0.846 6 | 0.896 9 |
| RSG-SD | 204 | 7 | 0.865 2 | 0.913 8 | |
| Rraw | CA | 31 | 8 | 0.857 9 | 0.893 6 |
| RSG-SD | 31 | 18 | 0.885 7 | 0.911 0 | |
| Rraw | RF | 49 | 10 | 0.899 7 | 0.921 1 |
| RSG-SD | 35 | 10 | 0.944 2 | 0.951 4 | |
| Rraw | CARS | 48 | 14 | 0.857 7 | 0.924 3 |
| RSG-SD | 29 | 9 | 0.910 6 | 0.928 8 | |
| Rraw | UVE | 25 | 15 | 0.854 2 | 0.872 7 |
| RSG-SD | 40 | 7 | 0.906 4 | 0.927 8 | |
| Rraw | MWPLS | 190 | 8 | 0.856 9 | 0.897 0 |
| RSG-SD | 190 | 5 | 0.905 2 | 0.927 7 |
Table 2 Accuracies of PLSR modeling with different variable selection methods
| 光谱 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 主成分数 Principal component | 建模集 | 验证集 |
|---|---|---|---|---|---|
| Rraw | FULL | 204 | 10 | 0.846 6 | 0.896 9 |
| RSG-SD | 204 | 7 | 0.865 2 | 0.913 8 | |
| Rraw | CA | 31 | 8 | 0.857 9 | 0.893 6 |
| RSG-SD | 31 | 18 | 0.885 7 | 0.911 0 | |
| Rraw | RF | 49 | 10 | 0.899 7 | 0.921 1 |
| RSG-SD | 35 | 10 | 0.944 2 | 0.951 4 | |
| Rraw | CARS | 48 | 14 | 0.857 7 | 0.924 3 |
| RSG-SD | 29 | 9 | 0.910 6 | 0.928 8 | |
| Rraw | UVE | 25 | 15 | 0.854 2 | 0.872 7 |
| RSG-SD | 40 | 7 | 0.906 4 | 0.927 8 | |
| Rraw | MWPLS | 190 | 8 | 0.856 9 | 0.897 0 |
| RSG-SD | 190 | 5 | 0.905 2 | 0.927 7 |
| 预处理 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 建模集 | 验证集 |
|---|---|---|---|---|
| Rraw | FULL | 204 | 0.919 3 | 0.952 5 |
| RSG-SD | 204 | 0.949 7 | 0.953 4 | |
| Rraw | CA | 31 | 0.853 1 | 0.899 8 |
| RSG-SD | 31 | 0.949 3 | 0.942 0 | |
| Rraw | RF | 49 | 0.919 3 | 0.965 8 |
| RSG-SD | 35 | 0.952 9 | 0.964 3 | |
| Rraw | CARS | 48 | 0.866 4 | 0.957 8 |
| RSG-SD | 29 | 0.940 5 | 0.954 6 | |
| Rraw | UVE | 25 | 0.881 3 | 0.947 7 |
| RSG-SD | 40 | 0.944 8 | 0.960 3 | |
| Rraw | MWPLS | 190 | 0.926 1 | 0.953 2 |
| RSG-SD | 190 | 0.945 9 | 0.948 6 |
Table 3 Accuracies of VR modeling with different variable selection methods
| 预处理 Spectrum | 筛选方法 Selection method | 波段数量 Bands number | 建模集 | 验证集 |
|---|---|---|---|---|
| Rraw | FULL | 204 | 0.919 3 | 0.952 5 |
| RSG-SD | 204 | 0.949 7 | 0.953 4 | |
| Rraw | CA | 31 | 0.853 1 | 0.899 8 |
| RSG-SD | 31 | 0.949 3 | 0.942 0 | |
| Rraw | RF | 49 | 0.919 3 | 0.965 8 |
| RSG-SD | 35 | 0.952 9 | 0.964 3 | |
| Rraw | CARS | 48 | 0.866 4 | 0.957 8 |
| RSG-SD | 29 | 0.940 5 | 0.954 6 | |
| Rraw | UVE | 25 | 0.881 3 | 0.947 7 |
| RSG-SD | 40 | 0.944 8 | 0.960 3 | |
| Rraw | MWPLS | 190 | 0.926 1 | 0.953 2 |
| RSG-SD | 190 | 0.945 9 | 0.948 6 |
| [1] |
XUE L H, YANG L Z. Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(1):97-106.
DOI URL |
| [2] |
LIMANTARA L, DETTLING M, INDRAWATI R, et al. Analysis on the chlorophyll content of commercial green leafy vegetables[J]. Procedia Chemistry, 2015, 14:225-231.
DOI URL |
| [3] | 董晶晶, 王力, 牛铮. 植被冠层水平叶绿素含量的高光谱估测[J]. 光谱学与光谱分析, 2009, 29(11):3003-3006. |
| DONG J J, WANG L, NIU Z. Estimation of canopy chlorophyll content using hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2009, 29(11):3003-3006.(in Chinese with English abstract) | |
| [4] | 关锦毅, 郝再彬, 张达, 等. 叶绿素提取与检测及生物学功效的研究进展[J]. 东北农业大学学报, 2009, 40(12):130-134. |
| GUAN J Y, HAO Z B, ZHANG D, et al. A review on the extraction, detection and biological function of chlorophyll[J]. Journal of Northeast Agricultural University, 2009, 40(12):130-134.(in Chinese with English abstract) | |
| [5] | 张兵. 高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5):1062-1090. |
| ZHANG B. Advancement of hyperspectral image processing and information extraction[J]. Journal of Remote Sensing, 2016, 20(5):1062-1090.(in Chinese with English abstract) | |
| [6] | 杨峰, 范亚民, 李建龙, 等. 高光谱数据估测稻麦叶面积指数和叶绿素密度[J]. 农业工程学报, 2010, 26(2):237-243. |
| YANG F, FAN Y M, LI J L, et al. Estimating LAI and CCD of rice and wheat using hyperspectral remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(2):237-243.(in Chinese with English abstract) | |
| [7] | 唐延林, 黄敬峰, 王秀珍, 等. 玉米叶片高光谱特征及与叶绿素、类胡萝卜素相关性的研究[J]. 玉米科学, 2008, 16(2):71-76. |
| TANG Y L, HUANG J F, WANG X Z, et al. Study on hyper spectral characteristics of corn leaves and their correlation to chrolophyll and carotenoid[J]. Journal of Maize Sciences, 2008, 16(2):71-76.(in Chinese with English abstract) | |
| [8] | 王强, 易秋香, 包安明, 等. 基于高光谱反射率的棉花冠层叶绿素密度估算[J]. 农业工程学报, 2012, 28(15):125-132. |
| WANG Q, YI Q X, BAO A M, et al. Estimating chlorophyll density of cotton canopy by hyperspectral reflectance[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(15):125-132.(in Chinese with English abstract) | |
| [9] | 朱亚星, 于雷, 洪永胜, 等. 土壤有机质高光谱特征与波长变量优选方法[J]. 中国农业科学, 2017, 50(22):4325-4337. |
| ZHU Y X, YU L, HONG Y S, et al. Hyperspectral features and wavelength variables selection methods of soil organic matter[J]. Scientia Agricultura Sinica, 2017, 50(22):4325-4337.(in Chinese with English abstract) | |
| [10] |
LI Y K, JING J. A consensus PLS method based on diverse wavelength variables models for analysis of near-infrared spectra[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 130:45-49.
DOI URL |
| [11] | 赵艳茹, 余克强, 李晓丽, 等. 基于高光谱成像的南瓜叶片叶绿素分布可视化研究[J]. 光谱学与光谱分析, 2014, 34(5):1378-1382. |
| ZHAO Y R, YU K Q, LI X L, et al. Study on SPAD visualization of pumpkin leaves based on hyperspectral imaging technology[J]. Spectroscopy and Spectral Analysis, 2014, 34(5):1378-1382.(in Chinese with English abstract) | |
| [12] | 邵园园, 王永贤, 玄冠涛, 等. 基于高光谱成像的肥城桃品质可视化分析与成熟度检测[J]. 农业机械学报, 2020, 51(8):344-350. |
| SHAO Y Y, WANG Y X, XUAN G T, et al. Visual detection of SSC and firmness and maturity prediction for Feicheng peach by using hyperspectral imaging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(8):344-350.(in Chinese with English abstract) | |
| [13] | 龙燕, 连雅茹, 马敏娟, 等. 基于高光谱技术和改进型区间随机蛙跳算法的番茄硬度检测[J]. 农业工程学报, 2019, 35(13):270-276. |
| LONG Y, LIAN Y R, MA M J, et al. Detection of tomato hardness based on hyperspectral technology and modified interval random frog algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13):270-276.(in Chinese with English abstract) | |
| [14] | 孙红, 刘宁, 吴莉, 等. 高光谱成像的马铃薯叶片含水率分布可视化[J]. 光谱学与光谱分析, 2019, 39(3):910-916. |
| SUN H, LIU N, WU L, et al. Visualization of water content distribution in potato leaves based on hyperspectral image[J]. Spectroscopy and Spectral Analysis, 2019, 39(3):910-916.(in Chinese with English abstract) | |
| [15] | 孙红, 郑涛, 刘宁, 等. 高光谱图像检测马铃薯植株叶绿素含量垂直分布[J]. 农业工程学报, 2018, 34(1):149-156. |
| SUN H, ZHENG T, LIU N, et al. Vertical distribution of chlorophyll in potato plants based on hyperspectral imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1):149-156.(in Chinese with English abstract) | |
| [16] |
GATIUS F, MIRALBÉS C, DAVID C, et al. Comparison of CCA and PLS to explore and model NIR data[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 164:76-82.
DOI URL |
| [17] |
KAWAMURA K, TSUJIMOTO Y, RABENARIVO M, et al. Vis-NIR spectroscopy and PLS regression with waveband selection for estimating the total C and N of paddy soils in Madagascar[J]. Remote Sensing, 2017, 9(10):1081.
DOI URL |
| [18] |
GENISHEVA Z, QUINTELAS C, MESQUITA D P, et al. New PLS analysis approach to wine volatile compounds characterization by near infrared spectroscopy (NIR)[J]. Food Chemistry, 2018, 246:172-178.
DOI URL |
| [19] | 陈凯, 朱钰. 机器学习及其相关算法综述[J]. 统计与信息论坛, 2007, 22(5):105-112. |
| CHEN K, ZHU Y. A summary of machine learning and related algorithms[J]. Statistics & Information Forum, 2007, 22(5):105-112.(in Chinese with English abstract) | |
| [20] | 金秀, 朱先志, 李绍稳, 等. 基于梯度提升树的土壤速效磷高光谱回归预测方法[J]. 激光与光电子学进展, 2019, 56(13):141-150. |
| JIN X, ZHU X Z, LI S W, et al. Predicting soil available phosphorus by hyperspectral regression method based on gradient boosting decision tree[J]. Laser & Optoelectronics Progress, 2019, 56(13):141-150.(in Chinese with English abstract) | |
| [21] | 刘茂成, 李志洪. 植物叶绿素光谱测定仪的原理与设计[J]. 中国农机化学报, 2017, 38(1):74-79. |
| LIU M C, LI Z H. Principle and design of chlorophyll spectrometry meter for plants[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(1):74-79.(in Chinese with English abstract) | |
| [22] | 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析, 2019, 39(9):2800-2806. |
| DIWU P Y, BIAN X H, WANG Z F, et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis, 2019, 39(9):2800-2806.(in Chinese with English abstract) | |
| [23] | 田安红, 熊黑钢, 赵俊三, 等. 分数阶微分对盐渍土野外光谱预处理精度提升的机理分析[J]. 光谱学与光谱分析, 2019, 39(8):2495-2500. |
| TIAN A H, XIONG H G, ZHAO J S, et al. Mechanism improvement for pretreatment accuracy of field spectra of saline soil using fractional differential algorithm[J]. Spectroscopy and Spectral Analysis, 2019, 39(8):2495-2500.(in Chinese with English abstract) | |
| [24] | 陈立旦, 赵艳茹. 可见-近红外光谱联合随机蛙跳算法检测生物柴油含水量[J]. 农业工程学报, 2014, 30(8):168-173. |
| CHEN L D, ZHAO Y R. Measurement of water content in biodiesel using visible and near infrared spectroscopy combined with Random-Frog algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(8):168-173.(in Chinese with English abstract) | |
| [25] |
YUN Y H, LI H D, WOOD L R E, et al. An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration[J]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 2013, 111:31-36.
DOI URL |
| [26] | 葛翔宇, 丁建丽, 王敬哲, 等. 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算[J]. 光学学报, 2018, 38(10):393-400. |
| GE X Y, DING J L, WANG J Z, et al. Estimation of soil moisture content based on competitive adaptive reweighted sampling algorithm coupled with machine learning[J]. Acta Optica Sinica, 2018, 38(10):393-400.(in Chinese with English abstract) | |
| [27] | 李盛芳, 贾敏智, 董大明. 随机森林算法的水果糖分近红外光谱测量[J]. 光谱学与光谱分析, 2018, 38(6):1766-1771. |
| LI S F, JIA M Z, DONG D M. Fast measurement of sugar in fruits using near infrared spectroscopy combined with random forest algorithm[J]. Spectroscopy and Spectral Analysis, 2018, 38(6):1766-1771.(in Chinese with English abstract) |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
