Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (9): 2020-2031.DOI: 10.3969/j.issn.1004-1524.2022.09.21
• Biosystems Engineening • Previous Articles Next Articles
GUO Han1,2(), LU Zhou2,*(
), XU Feifei2, LUO Ming2, ZHANG Xu1,*(
)
Received:
2021-04-14
Online:
2022-09-25
Published:
2022-09-30
Contact:
LU Zhou,ZHANG Xu
CLC Number:
GUO Han, LU Zhou, XU Feifei, LUO Ming, ZHANG Xu. Leaf area index estimation of winter wheat based on global sensitivity analysis and machine learning[J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 2020-2031.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.09.21
波段 Bands | 中心波长 Central wavelength/nm | 空间分辨率 Space resolution/m |
---|---|---|
B1-Coastal aerosol | 443 | 60 |
B2-Blue | 490 | 10 |
B3-Green | 560 | 10 |
B4-Red | 665 | 10 |
B5-red edge (RE-1) | 705 | 20 |
B6-red edge (RE-2) | 740 | 20 |
B7-red edge (RE-3) | 783 | 20 |
B8-NIR | 842 | 10 |
B8a-Narrow NIR (NNIR) | 865 | 20 |
B9-water vapour | 945 | 60 |
B10-SWIR-Cirrus | 1 380 | 60 |
B11-SWIR-1 | 1 610 | 20 |
B12-SWIR-2 | 2 190 | 20 |
Table 1 Sentinel-2 band information
波段 Bands | 中心波长 Central wavelength/nm | 空间分辨率 Space resolution/m |
---|---|---|
B1-Coastal aerosol | 443 | 60 |
B2-Blue | 490 | 10 |
B3-Green | 560 | 10 |
B4-Red | 665 | 10 |
B5-red edge (RE-1) | 705 | 20 |
B6-red edge (RE-2) | 740 | 20 |
B7-red edge (RE-3) | 783 | 20 |
B8-NIR | 842 | 10 |
B8a-Narrow NIR (NNIR) | 865 | 20 |
B9-water vapour | 945 | 60 |
B10-SWIR-Cirrus | 1 380 | 60 |
B11-SWIR-1 | 1 610 | 20 |
B12-SWIR-2 | 2 190 | 20 |
参数Parameter | 范围Range | |
---|---|---|
结构系数Structure coefficient (N) | 1.3~1.7 | 1.5±0.1 |
叶绿素含量Chlorophyll content (Cab)/(μg·cm-2) | 20~70 | 45±14 |
类胡萝卜素含量Carotenoid content (Car)/(μg·cm-2) | 5.0~17.5 | — |
等效水厚度Equivalent water thickness (Cw)/cm | 0.001~0.1 | 0.050 5±0.028 6 |
叶片含水量Leaf water content (Cm)/(g·cm-2) | 0.003~0.011 | 0.007±0.002 |
褐色素含量Brown pigment content (Cbp) | 0.05 | — |
平均叶倾角Average leaf angle (Lidfa)/(°) | 35~70 | 52.5±10.1 |
叶面积指数Leaf area index (LAI) | 0.1~9.0 | 4.550 1±2.569 1 |
热点Hot spot (hspot) | 0.05~0.5 | 0.275±0.130 |
土壤亮度系数Soil brightness parameter (Psoil) | 0~1 | 0.5±0.3 |
太阳天顶角Solar zenith angle (tts)/(°) | 25 | — |
观察者天顶角Observer zenith angle (tto)/(°) | 30 | — |
方位Azimuth (psi)/(°) | 45 | — |
Table 2 Parameter settings of PROSAIL model
参数Parameter | 范围Range | |
---|---|---|
结构系数Structure coefficient (N) | 1.3~1.7 | 1.5±0.1 |
叶绿素含量Chlorophyll content (Cab)/(μg·cm-2) | 20~70 | 45±14 |
类胡萝卜素含量Carotenoid content (Car)/(μg·cm-2) | 5.0~17.5 | — |
等效水厚度Equivalent water thickness (Cw)/cm | 0.001~0.1 | 0.050 5±0.028 6 |
叶片含水量Leaf water content (Cm)/(g·cm-2) | 0.003~0.011 | 0.007±0.002 |
褐色素含量Brown pigment content (Cbp) | 0.05 | — |
平均叶倾角Average leaf angle (Lidfa)/(°) | 35~70 | 52.5±10.1 |
叶面积指数Leaf area index (LAI) | 0.1~9.0 | 4.550 1±2.569 1 |
热点Hot spot (hspot) | 0.05~0.5 | 0.275±0.130 |
土壤亮度系数Soil brightness parameter (Psoil) | 0~1 | 0.5±0.3 |
太阳天顶角Solar zenith angle (tts)/(°) | 25 | — |
观察者天顶角Observer zenith angle (tto)/(°) | 30 | — |
方位Azimuth (psi)/(°) | 45 | — |
植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized difference vegetation index (NDVI) | (NIR-R))/(NIR+R) | [ |
标准化差异红边指数Normalized difference red-edge index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
红边比值植被指数Red-edge ratio vegetation index (RERVI) | NIR/RE | [ |
植被指数Difference vegetation index (DVI) | NIR-R | [ |
红边差植被指数Red-edge difference vegetation index (REDVI) | NIR-RE | [ |
绿色植被指数Green difference vegetation index(GDVI) | NIR-G | [ |
红边绿差植被指数Red edge green difference vegetation index (REGDVI) | RE-G | [ |
绿化率植被指数Green ratio vegetation index(GRVI) | NIR/G | [ |
红边绿比植被指数Red edge green ration vegetation index (REGRVI) | RE/G | [ |
绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (NIR-G)/(NIR+G) | [ |
红边绿归一化差值植被指数 | (RE-G)/(RE+G) | [ |
Red edge green normalized difference vegetation index (REGNDVI) | ||
增强型植被指数Enhanced vegetation index (EVI) | 2.5×(NIR-R)/(NIR+6·R-7.5·G+1)) | [ |
改良增强植被指数Modified enhanced vegetation index (MEVI) | 2.5×(NIR-RE)/(NIR+6·RE-7.5·G+1) | [ |
土壤矫正植被指数Soil-adjusted vegetation index (SAVI) | (NIR-R)/(NIR+R+0.25)+0.25 | [ |
土壤矫正红边指数Soil-adjusted red-edge index (SARE) | (NIR-RE)/(NIR+R+0.25)+0.25 | [ |
绿色叶绿素指数Green chlorophyll index (CIg) | (NIR-G)/G | [ |
叶绿素指数Chlorophyll index (CIre) | (NIR-RE)/RE | [ |
归一化水体指数Normalized difference water index (NDWI) | (NIR-SWIR)/(NIR+SWIR) | [ |
水分胁迫指数Moisture stress index (MSI) | SWIR/NIR | [ |
Table 3 Vegetation index for estimation of wheat LAI
植被指数 Vegetation index | 计算公式 Calculation formula | 参考文献 Reference |
---|---|---|
归一化植被指数Normalized difference vegetation index (NDVI) | (NIR-R))/(NIR+R) | [ |
标准化差异红边指数Normalized difference red-edge index (NDRE) | (NIR-RE)/(NIR+RE) | [ |
比值植被指数Ratio vegetation index (RVI) | NIR/R | [ |
红边比值植被指数Red-edge ratio vegetation index (RERVI) | NIR/RE | [ |
植被指数Difference vegetation index (DVI) | NIR-R | [ |
红边差植被指数Red-edge difference vegetation index (REDVI) | NIR-RE | [ |
绿色植被指数Green difference vegetation index(GDVI) | NIR-G | [ |
红边绿差植被指数Red edge green difference vegetation index (REGDVI) | RE-G | [ |
绿化率植被指数Green ratio vegetation index(GRVI) | NIR/G | [ |
红边绿比植被指数Red edge green ration vegetation index (REGRVI) | RE/G | [ |
绿色归一化植被指数Green normalized difference vegetation index (GNDVI) | (NIR-G)/(NIR+G) | [ |
红边绿归一化差值植被指数 | (RE-G)/(RE+G) | [ |
Red edge green normalized difference vegetation index (REGNDVI) | ||
增强型植被指数Enhanced vegetation index (EVI) | 2.5×(NIR-R)/(NIR+6·R-7.5·G+1)) | [ |
改良增强植被指数Modified enhanced vegetation index (MEVI) | 2.5×(NIR-RE)/(NIR+6·RE-7.5·G+1) | [ |
土壤矫正植被指数Soil-adjusted vegetation index (SAVI) | (NIR-R)/(NIR+R+0.25)+0.25 | [ |
土壤矫正红边指数Soil-adjusted red-edge index (SARE) | (NIR-RE)/(NIR+R+0.25)+0.25 | [ |
绿色叶绿素指数Green chlorophyll index (CIg) | (NIR-G)/G | [ |
叶绿素指数Chlorophyll index (CIre) | (NIR-RE)/RE | [ |
归一化水体指数Normalized difference water index (NDWI) | (NIR-SWIR)/(NIR+SWIR) | [ |
水分胁迫指数Moisture stress index (MSI) | SWIR/NIR | [ |
变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE |
---|---|---|---|---|---|---|---|---|
B | 0.251 | 1.124 | GRVI | 0.560 | 1.214 | REGNDVI3 | 0.343 | 1.130 |
G | 0.177 | 1.274 | GNDVI | 0.547 | 1.172 | REGRVI2 | 0.298 | 1.191 |
R | 0.373 | 1.207 | SAVI | 0.512 | 1.063 | REDVI3 | 0.286 | 1.039 |
RE1 | 0.083 | 1.130 | RVI | 0.511 | 1.187 | REGDVI3 | 0.279 | 1.003 |
RE2 | 0.136 | 1.000 | MTVI2 | 0.504 | 1.079 | REGNDVI2 | 0.271 | 1.151 |
RE3 | 0.255 | 0.982 | EVI | 0.496 | 1.010 | SARE3 | 0.181 | 1.080 |
NIR | 0.463 | 0.979 | NDVI | 0.492 | 1.132 | REGDVI2 | 0.180 | 1.023 |
NNIR | 0.286 | 0.958 | GDVI | 0.491 | 1.003 | NDRE3 | 0.155 | 1.086 |
SWIR1 | 0.115 | 1.333 | DVI | 0.486 | 1.002 | CIre3 | 0.153 | 1.082 |
SWIR2 | 0.303 | 1.548 | REDVI1 | 0.484 | 1.003 | RERVI3 | 0.153 | 1.082 |
SARE2 | 0.707 | 0.907 | SARE1 | 0.483 | 1.067 | MEVI2 | 0.087 | 1.105 |
NDRE2 | 0.681 | 0.954 | MEVI1 | 0.483 | 1.018 | MEVI3 | 0.062 | 1.084 |
REDVI2 | 0.678 | 0.896 | NDRE1 | 0.441 | 1.131 | REGDVI1 | 0.009 | 1.049 |
CIre2 | 0.667 | 0.950 | CIre1 | 0.439 | 1.108 | REGRVI1 | 0.003 | 1.067 |
RERVI2 | 0.667 | 0.950 | RERVI1 | 0.439 | 1.108 | REGNDVI1 | 0.003 | 1.066 |
Cig | 0.560 | 1.214 | REGRVI3 | 0.365 | 1.172 |
Table 4 Performance of Sentinel-2 spectral variables in LAI estimation
变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE | 变量 Variable | 精度 R2 | 均方根误差 RMSE |
---|---|---|---|---|---|---|---|---|
B | 0.251 | 1.124 | GRVI | 0.560 | 1.214 | REGNDVI3 | 0.343 | 1.130 |
G | 0.177 | 1.274 | GNDVI | 0.547 | 1.172 | REGRVI2 | 0.298 | 1.191 |
R | 0.373 | 1.207 | SAVI | 0.512 | 1.063 | REDVI3 | 0.286 | 1.039 |
RE1 | 0.083 | 1.130 | RVI | 0.511 | 1.187 | REGDVI3 | 0.279 | 1.003 |
RE2 | 0.136 | 1.000 | MTVI2 | 0.504 | 1.079 | REGNDVI2 | 0.271 | 1.151 |
RE3 | 0.255 | 0.982 | EVI | 0.496 | 1.010 | SARE3 | 0.181 | 1.080 |
NIR | 0.463 | 0.979 | NDVI | 0.492 | 1.132 | REGDVI2 | 0.180 | 1.023 |
NNIR | 0.286 | 0.958 | GDVI | 0.491 | 1.003 | NDRE3 | 0.155 | 1.086 |
SWIR1 | 0.115 | 1.333 | DVI | 0.486 | 1.002 | CIre3 | 0.153 | 1.082 |
SWIR2 | 0.303 | 1.548 | REDVI1 | 0.484 | 1.003 | RERVI3 | 0.153 | 1.082 |
SARE2 | 0.707 | 0.907 | SARE1 | 0.483 | 1.067 | MEVI2 | 0.087 | 1.105 |
NDRE2 | 0.681 | 0.954 | MEVI1 | 0.483 | 1.018 | MEVI3 | 0.062 | 1.084 |
REDVI2 | 0.678 | 0.896 | NDRE1 | 0.441 | 1.131 | REGDVI1 | 0.009 | 1.049 |
CIre2 | 0.667 | 0.950 | CIre1 | 0.439 | 1.108 | REGRVI1 | 0.003 | 1.067 |
RERVI2 | 0.667 | 0.950 | RERVI1 | 0.439 | 1.108 | REGNDVI1 | 0.003 | 1.066 |
Cig | 0.560 | 1.214 | REGRVI3 | 0.365 | 1.172 |
序号 No. | 策略1 Strategy 1(SLAI) | 策略2 Strategy 2(SLAI+SCab) | 策略3 Strategy 3(SLAI-SInteraction) | 策略4 Strategy 4(SLAI+SCab-SInteraction) |
---|---|---|---|---|
1 | MTVI2 | SARE1 | MTVI2 | MTVI2 |
2 | SAVI | NDRE1 | SAVI | SARE1 |
3 | NDVI | MTVI2 | NDVI | NDRE1 |
4 | RVI | GNDVI | RVI | SAVI |
5 | NDRE3 | REGNDVI3 | DVI | RVI |
6 | CIRE3 | REGNDVI2 | REDVI1 | SARE2 |
7 | RERVI3 | SAVI | REGDVI3 | GNDVI |
8 | DVI | RVI | SARE1 | REGNDVI3 |
9 | SARE3 | REGRVI2 | GDVI | REGNDVI2 |
10 | REDVI1 | CIRE1 | NDWI2 | REGRVI2 |
11 | REGDVI3 | RERVI1 | SARE3 | NDRE2 |
12 | MSI2 | REGRVI3 | NDRE3 | CIRE1 |
13 | SARE1 | NDVI | REGDVI2 | RERVI1 |
14 | NDWI2 | CIg | CIRE3 | CIRE2 |
15 | GDVI | GRVI | RERVI3 | RERVI2 |
16 | REGDVI2 | SARE2 | MSI2 | REGRVI3 |
17 | REGNDVI2 | REGRVI1 | EVI | CIg |
18 | REGNDVI3 | REGNDVI1 | REGNDVI2 | GRVI |
19 | EVI | NDRE2 | REGNDVI3 | REDVI1 |
20 | GNDVI | CIRE2 | GNDVI | REGRVI1 |
21 | MEVI1 | RERVI2 | NDRE1 | REDVI2 |
22 | R | REDVI2 | MEVI1 | REGNDVI1 |
23 | NDRE1 | REDVI1 | RE-3 | NDVI |
24 | RE-3 | NDRE3 | NIR | REGDVI3 |
25 | NIR | CIRE3 | NNIR | DVI |
26 | NNIR | RERVI3 | REDVI2 | GDVI |
27 | MSI1 | REGDVI3 | MSI1 | EVI |
28 | REGNDVI1 | EVI | REGNDVI1 | NDWI2 |
29 | REGRVI1 | DVI | NDWI1 | SARE3 |
30 | REDVI2 | GDVI | REGRVI1 | REGDVI2 |
Table 5 Different strategies for sorting spectral variables
序号 No. | 策略1 Strategy 1(SLAI) | 策略2 Strategy 2(SLAI+SCab) | 策略3 Strategy 3(SLAI-SInteraction) | 策略4 Strategy 4(SLAI+SCab-SInteraction) |
---|---|---|---|---|
1 | MTVI2 | SARE1 | MTVI2 | MTVI2 |
2 | SAVI | NDRE1 | SAVI | SARE1 |
3 | NDVI | MTVI2 | NDVI | NDRE1 |
4 | RVI | GNDVI | RVI | SAVI |
5 | NDRE3 | REGNDVI3 | DVI | RVI |
6 | CIRE3 | REGNDVI2 | REDVI1 | SARE2 |
7 | RERVI3 | SAVI | REGDVI3 | GNDVI |
8 | DVI | RVI | SARE1 | REGNDVI3 |
9 | SARE3 | REGRVI2 | GDVI | REGNDVI2 |
10 | REDVI1 | CIRE1 | NDWI2 | REGRVI2 |
11 | REGDVI3 | RERVI1 | SARE3 | NDRE2 |
12 | MSI2 | REGRVI3 | NDRE3 | CIRE1 |
13 | SARE1 | NDVI | REGDVI2 | RERVI1 |
14 | NDWI2 | CIg | CIRE3 | CIRE2 |
15 | GDVI | GRVI | RERVI3 | RERVI2 |
16 | REGDVI2 | SARE2 | MSI2 | REGRVI3 |
17 | REGNDVI2 | REGRVI1 | EVI | CIg |
18 | REGNDVI3 | REGNDVI1 | REGNDVI2 | GRVI |
19 | EVI | NDRE2 | REGNDVI3 | REDVI1 |
20 | GNDVI | CIRE2 | GNDVI | REGRVI1 |
21 | MEVI1 | RERVI2 | NDRE1 | REDVI2 |
22 | R | REDVI2 | MEVI1 | REGNDVI1 |
23 | NDRE1 | REDVI1 | RE-3 | NDVI |
24 | RE-3 | NDRE3 | NIR | REGDVI3 |
25 | NIR | CIRE3 | NNIR | DVI |
26 | NNIR | RERVI3 | REDVI2 | GDVI |
27 | MSI1 | REGDVI3 | MSI1 | EVI |
28 | REGNDVI1 | EVI | REGNDVI1 | NDWI2 |
29 | REGRVI1 | DVI | NDWI1 | SARE3 |
30 | REDVI2 | GDVI | REGRVI1 | REGDVI2 |
变量数量 Number of variables | 策略Strategy | SLAI | SLAI+SCab | SLAI-SInteraction | SLAI+SCab-SInteraction | ||||
---|---|---|---|---|---|---|---|---|---|
模型Modeling | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
10 | GSA-PLSR | 0.69 | 0.84 | 0.69 | 0.84 | 0.69 | 0.84 | 0.70 | 0.82 |
GSA-SVM | 0.40 | 1.17 | 0.41 | 1.16 | 0.40 | 1.17 | 0.41 | 1.16 | |
GSA-RF | 0.91 | 0.45 | 0.90 | 0.48 | 0.91 | 0.46 | 0.92 | 0.42 | |
20 | GSA-PLSR | 0.76 | 0.73 | 0.75 | 0.75 | 0.76 | 0.73 | 0.79 | 0.69 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.13 | 0.40 | 1.17 | 0.44 | 1.13 | |
GSA-RF | 0.92 | 0.44 | 0.92 | 0.42 | 0.92 | 0.44 | 0.92 | 0.42 | |
30 | GSA-PLSR | 0.87 | 0.55 | 0.93 | 0.40 | 0.88 | 0.53 | 0.92 | 0.44 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.12 | 0.40 | 1.16 | 0.44 | 1.12 | |
GSA-RF | 0.93 | 0.40 | 0.93 | 0.40 | 0.94 | 0.38 | 0.94 | 0.38 |
Table 6 Comparison of wheat LAI estimation by GSA-MLs
变量数量 Number of variables | 策略Strategy | SLAI | SLAI+SCab | SLAI-SInteraction | SLAI+SCab-SInteraction | ||||
---|---|---|---|---|---|---|---|---|---|
模型Modeling | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | |
10 | GSA-PLSR | 0.69 | 0.84 | 0.69 | 0.84 | 0.69 | 0.84 | 0.70 | 0.82 |
GSA-SVM | 0.40 | 1.17 | 0.41 | 1.16 | 0.40 | 1.17 | 0.41 | 1.16 | |
GSA-RF | 0.91 | 0.45 | 0.90 | 0.48 | 0.91 | 0.46 | 0.92 | 0.42 | |
20 | GSA-PLSR | 0.76 | 0.73 | 0.75 | 0.75 | 0.76 | 0.73 | 0.79 | 0.69 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.13 | 0.40 | 1.17 | 0.44 | 1.13 | |
GSA-RF | 0.92 | 0.44 | 0.92 | 0.42 | 0.92 | 0.44 | 0.92 | 0.42 | |
30 | GSA-PLSR | 0.87 | 0.55 | 0.93 | 0.40 | 0.88 | 0.53 | 0.92 | 0.44 |
GSA-SVM | 0.40 | 1.17 | 0.44 | 1.12 | 0.40 | 1.16 | 0.44 | 1.12 | |
GSA-RF | 0.93 | 0.40 | 0.93 | 0.40 | 0.94 | 0.38 | 0.94 | 0.38 |
机器学习法MLs | R2 | RMSE |
---|---|---|
PLSR | 0.81 | 0.31 |
SVM | 0.41 | 1.06 |
RF | 0.92 | 0.40 |
Table 7 Comparison of wheat LAI estimation by MLs
机器学习法MLs | R2 | RMSE |
---|---|---|
PLSR | 0.81 | 0.31 |
SVM | 0.41 | 1.06 |
RF | 0.92 | 0.40 |
建模方法 Modeling methods | 机器学习 MLs | 全局敏感性机器学习 GSA-MLs |
---|---|---|
PLSR | 487.772 | 226.270 |
SVM | 495.957 | 227.190 |
RF | 569.327 | 261.130 |
Table 8 Computer running time in the application process of different estimation models s
建模方法 Modeling methods | 机器学习 MLs | 全局敏感性机器学习 GSA-MLs |
---|---|---|
PLSR | 487.772 | 226.270 |
SVM | 495.957 | 227.190 |
RF | 569.327 | 261.130 |
[1] |
ZHUO W, HUANG J X, GAO X R, et al. Prediction of winter wheat maturity dates through assimilating remotely sensed leaf area index into crop growth model[J]. Remote Sensing, 2020, 12(18): 2896.
DOI URL |
[2] |
LI H, CHEN Z X, JIANG Z W, et al. Comparative analysis of GF-1, HJ-1, and Landsat-8 data for estimating the leaf area index of winter wheat[J]. Journal of Integrative Agriculture, 2017, 16(2): 266-285.
DOI URL |
[3] |
DONG T F, LIU J G, SHANG J L, et al. Assessment of red-edge vegetation indices for crop leaf area index estimation[J]. Remote Sensing of Environment, 2019, 222: 133-143.
DOI URL |
[4] |
HOJAS GASCÓN L, CECCHERINI G, GARCÍA HARO F, et al. The potential of high resolution (5 m) RapidEye optical data to estimate above ground biomass at the national level over Tanzania[J]. Forests, 2019, 10(2): 107.
DOI URL |
[5] |
AZADBAKHT M, ASHOURLOO D, AGHIGHI H, et al. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques[J]. Computers and Electronics in Agriculture, 2019, 156: 119-128.
DOI URL |
[6] |
PADALIA H, SINHA S K, BHAVE V, et al. Estimating canopy LAI and chlorophyll of tropical forest plantation (North India) using Sentinel-2 data[J]. Advances in Space Research, 2020, 65(1): 458-469.
DOI URL |
[7] |
CUI B, ZHAO Q J, HUANG W J, et al. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2 and EnMAP data[J]. Journal of Integrative Agriculture, 2019, 18(6): 1230-1245.
DOI |
[8] |
ESTÉVEZ J, VICENT J, RIVERA-CAICEDO J P, et al. Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 289-304.
DOI URL |
[9] | 王丽爱, 周旭东, 朱新开, 等. 基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演[J]. 农业工程学报, 2016, 32(3): 149-154. |
WANG L A, ZHOU X D, ZHU X K, et al. Inverting wheat leaf area index based on HJ-CCD remote sensing data and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 149-154. (in Chinese with English abstract) | |
[10] |
LI X C, ZHANG Y J, LUO J H, et al. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 44: 104-112.
DOI URL |
[11] |
WANG L, CHANG Q R, LI F L, et al. Effects of growth stage development on paddy rice leaf area index prediction models[J]. Remote Sensing, 2019, 11(3): 361.
DOI URL |
[12] |
ABDEL-RAHMAN E M, AHMED F B, ISMAIL R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data[J]. International Journal of Remote Sensing, 2013, 34(2): 712-728.
DOI URL |
[13] |
FANG H L, BARET F, PLUMMER S, et al. An overview of global leaf area index (LAI): methods, products, validation, and applications[J]. Reviews of Geophysics, 2019, 57(3): 739-799.
DOI URL |
[14] |
DE LOS CAMPOS G, GIANOLA D, ROSA G J M. Reproducing kernel Hilbert spaces regression: a general framework for genetic evaluation[J]. Journal of Animal Science, 2009, 87(6): 1883-1887.
DOI PMID |
[15] | SOBOL I. On sensitivity estimation for nonlinear mathematical models[J]. Matem Modelirovanie, 1990, 2(1): 112-118. |
[16] |
SALTELLI A. Sensitivity analysis: Could better methods be used?[J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D3): 3789-3793.
DOI URL |
[17] |
SUN Y H, QIN Q M, REN H Z, et al. Red-edge band vegetation indices for leaf area index estimation from sentinel-2/MSI imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2): 826-840.
DOI URL |
[18] |
CHEN H Y, HUANG W J, LI W, et al. Estimation of LAI in winter wheat from multi-angular hyperspectral VNIR data: effects of view angles and plant architecture[J]. Remote Sensing, 2018, 10(10): 1630.
DOI URL |
[19] |
TUCKER C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150.
DOI URL |
[20] |
SIMS D A, GAMON J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 2002, 81(2/3): 337-354.
DOI URL |
[21] |
BASSO M, STOCCHERO D, VENTURA BAYAN HENRIQUES R, et al. Proposal for an embedded system architecture using a GNDVI algorithm to support UAV-based agrochemical spraying[J]. Sensors, 2019, 19(24): 5397.
DOI URL |
[22] | VINCINI M, FRAZZI E. Active sensing of the N status of wheat using optimized wavelength combination: impact of seed rate, variety and growth stage[J]. Precision Agriculture, 2009. |
[23] |
JORDAN C F. Derivation of leaf-area index from quality of light on the forest floor[J]. Ecology, 1969, 50(4): 663-666.
DOI URL |
[24] |
BUSCHMANN C, NAGEL E. In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation[J]. International Journal of Remote Sensing, 1993, 14(4): 711-722.
DOI URL |
[25] |
ZHANG H X, LI Q Z, LIU J G, et al. Corrections to “image classification using RapidEye data: integration of spectral and textual features in a random forest classifier” [DEC 17 5334-5349][J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(7): 2571.
DOI URL |
[26] |
JIANG Z Y, HUETE A R, DIDAN K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sensing of Environment, 2008, 112(10): 3833-3845.
DOI URL |
[27] |
JUSTICE C O, VERMOTE E, TOWNSHEND J R G, et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(4): 1228-1249.
DOI URL |
[28] |
HUETE A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.
DOI URL |
[29] |
ALI M, MONTZKA C, STADLER A, et al. Estimation and validation of RapidEye-based time-series of leaf area index for winter wheat in the rur catchment (Germany)[J]. Remote Sensing, 2015, 7(3): 2808-2831.
DOI URL |
[30] |
CLEVERS J, KOOISTRA L, VAN DEN BRANDE M. Using sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop[J]. Remote Sensing, 2017, 9(5): 405.
DOI URL |
[31] |
GAO B C. NDWI: a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3): 257-266.
DOI URL |
[32] |
DORAISWAMY P C, THOMPSON D R. A crop moisture stress index for large areas and its application in the prediction of spring wheat phenology[J]. Agricultural Meteorology, 1982, 27(1/2): 1-15.
DOI URL |
[33] |
NANNI M R, CEZAR E, SILVA JUNIOR C A D, et al. Partial least squares regression (PLSR) associated with spectral response to predict soil attributes in transitional lithologies[J]. Archives of Agronomy and Soil Science, 2018, 64(5): 682-695.
DOI URL |
[34] | 翁永玲, 戚浩平, 方洪宾, 等. 基于PLSR方法的青海茶卡-共和盆地土壤盐分高光谱遥感反演[J]. 土壤学报, 2010, 47(6): 1255-1263. |
WENG Y L, QI H P, FANG H B, et al. PLSR-based hyperspectral remote sensing retrieval of soil salinity of Chaka-Gonghe basin in Qinghai Province[J]. Acta Pedologica Sinica, 2010, 47(6): 1255-1263. (in Chinese with English abstract) | |
[35] | VAPNIK V N. The nature of statistical learning theory[M]. New York: Springer, 1999. |
[36] | BUHMANN M D. Radial basis functions[M]. Cambridge: Cambridge University Press, 2003. |
[37] |
LIANG L, QIN Z H, ZHAO S H, et al. Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method[J]. International Journal of Remote Sensing, 2016, 37(13): 2923-2949.
DOI URL |
[38] |
MENG X T, BAO Y L, LIU J G, et al. Regional soil organic carbon prediction model based on a discrete wavelet analysis of hyperspectral satellite data[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 89: 102111.
DOI URL |
[39] |
HOUBORG R, MCCABE M F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 135: 173-188.
DOI URL |
[1] | LIANG Chenggang, WANG Yan, GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong. Identification and bioinformatics analysis of sucrose transporter family FtSUCs in Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1591-1598. |
[2] | WANG Siliang, SHAO Yue, YAN Chengjin. Transcriptome analysis of Spodoptera furgiperda during corn-wheat host alternation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1236-1247. |
[3] | WU Yifan, XIA Jie, CHEN Sheng, ZHANG Wei, XIE Jinzhong. Study on suitable ratio for bamboo sawdust and wheat bran composting as substrate of Stropharia rugosoannulata [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1024-1031. |
[4] | CAI Yao, MIAO Yuxuan, WU Hao, WANG Dan. Hyperspectral characteristics and leaf area index (LAI) and SPAD value inversion of winter wheat under elevated CO2 concentration [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 582-589. |
[5] | YAN Ning, ZHANG Han, DONG Hongtu, KANG Kai, LUO Bin. Wheat variety recognition method based on same position segmentation of transmitted light and reflected light images [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 590-598. |
[6] | WANG Zhangjun, YAO Mingming, YU Huixia, WANG Yanqing, LI Qingfeng, LIU Fenglou, LIU Caixia, ZHANG Shuangxi, ZHANG Xiaogang, LIU Shengxiang. Construction of genetic map and analysis of QTL for grain protein traits using F2∶5 pedigrees derived from Ningchun No.4×Hedong black wheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1367-1378. |
[7] | WANG Lingling, WU Wenge, LI Rui, HU Jian, YAN Suhui, SHAO Qingqin, XU Feng, ZHANG Congyu, ZHOU Yongjin, LI Wenyang. Effects of nitrogen rate on grain quality and nitrogen utilization of weak gluten wheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 777-784. |
[8] | ZHANG Yuxun, WANG Lei, QU Xiangning, CAO Yuan, WU Mengyao, YU Ruixin, SUN Yuan. Application research of GF-1/WFV data in estimation of maize leaf area index [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 861-872. |
[9] | ZHENG Junqing, LI Ruiyuan, ZHENG Ran, LYU Dan, CHEN Qijiao, SHI Taoxiong, CHEN Qingfu. Variation analysis of grain weight, grain shape and protein content in recombinant inbred lines population of tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 565-575. |
[10] | YAO Zhao, WANG Chongyang, CUI Jing. Effect of nitrogen application amount on grain filling characteristics of winter wheat at different panicle positions under drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 576-585. |
[11] | ZHAO Ke, LI Qiurong, HOU Lu, BAI Yaobo, JIANG Liling, WEI Youhai, GUO Qingyun. Genetic analysis of stripe rust resistance genes in 2 spring wheat germplasm resources at adult stage [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 595-601. |
[12] | HAN Xiaolei, GAO Shiqi, ZHANG Fan, YANG Jian, LIU Peng, JIANG Hongming, LI Linzhi. Screening of host factors interacting with wheat yellow mosaic virus P2 by yeast two-hybrid system [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 497-505. |
[13] | XU Minmin, HUANG Ying, LI Bo, XU Yan, ZHANG Shuai, YAO Lingyun, WANG Zheng. Effect of biochar on wheat root-associated microbial community structures [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 516-525. |
[14] | WANG Tangang, SUN Ting, WANG Jichuan, LI Huiqin, GAO Zhen, SHI Yuanqiang. Effects of sowing date and density on population structure and lodging resistance of winter wheat under drip irrigation [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 193-202. |
[15] | WANG Jun, WU Xiaobao, SONG Jia, DENG Qianqian, ZENG Guang, REN Mingjian, YE Mao. Effect of seed soaking with exogenous calcium on activities of defense enzymes in wheat and detoxifying enzymes in Schizaphis graminum (Rondani) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2339-2347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||