Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (8): 1591-1598.DOI: 10.3969/j.issn.1004-1524.2022.08.03
• Crop Science • Previous Articles Next Articles
LIANG Chenggang(), WANG Yan*(
), GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong
Received:
2021-03-17
Online:
2022-08-25
Published:
2022-08-26
Contact:
WANG Yan
CLC Number:
LIANG Chenggang, WANG Yan, GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong. Identification and bioinformatics analysis of sucrose transporter family FtSUCs in Tartary buckwheat[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1591-1598.
基因编号Gene ID | GSL/bp | MTSL/bp | AAL | RMW/u | TIP | AI | PHP | LC |
---|---|---|---|---|---|---|---|---|
FtPinG0000184200.01 | 7 109 | 1 818 | 605 | 65 140.75 | 5.96 | 97.01 | 0.318 | ER |
FtPinG0000812400.01 | 3 802 | 549 | 182 | 19 782.90 | 4.32 | 105.05 | 0.663 | ER |
FtPinG0002608200.01 | 2 259 | 831 | 276 | 30 076.65 | 8.43 | 111.63 | 0.625 | ER |
FtPinG0009584000.01 | 1 436 | 1 038 | 345 | 38 316.55 | 8.7 | 109.34 | 0.651 | ER |
FtPinG0001943900.01 | 2 486 | 447 | 148 | 16 503.56 | 11.62 | 60.54 | 0.751 | CN |
FtPinG0008441300.01 | 3 691 | 1 263 | 420 | 45 212.66 | 6.60 | 105.19 | 0.539 | ER |
FtPinG0000342600.01 | 3 387 | 891 | 296 | 32 536.03 | 9.52 | 111.72 | 0.621 | ER |
FtPinG0001943500.01 | 2 610 | 573 | 190 | 20 759.12 | 11.37 | 79.63 | -0.018 | CN |
FtPinG0005577300.01 | 2 036 | 1 527 | 508 | 54 119.64 | 8.83 | 111.22 | 0.630 | ER |
FtPinG0001944100.01 | 2 849 | 1 251 | 416 | 25 182.57 | 6.30 | 104.35 | 0.468 | ER |
Table 1 Gene sequence analysis of FtSUCs in Tartary buckwheat
基因编号Gene ID | GSL/bp | MTSL/bp | AAL | RMW/u | TIP | AI | PHP | LC |
---|---|---|---|---|---|---|---|---|
FtPinG0000184200.01 | 7 109 | 1 818 | 605 | 65 140.75 | 5.96 | 97.01 | 0.318 | ER |
FtPinG0000812400.01 | 3 802 | 549 | 182 | 19 782.90 | 4.32 | 105.05 | 0.663 | ER |
FtPinG0002608200.01 | 2 259 | 831 | 276 | 30 076.65 | 8.43 | 111.63 | 0.625 | ER |
FtPinG0009584000.01 | 1 436 | 1 038 | 345 | 38 316.55 | 8.7 | 109.34 | 0.651 | ER |
FtPinG0001943900.01 | 2 486 | 447 | 148 | 16 503.56 | 11.62 | 60.54 | 0.751 | CN |
FtPinG0008441300.01 | 3 691 | 1 263 | 420 | 45 212.66 | 6.60 | 105.19 | 0.539 | ER |
FtPinG0000342600.01 | 3 387 | 891 | 296 | 32 536.03 | 9.52 | 111.72 | 0.621 | ER |
FtPinG0001943500.01 | 2 610 | 573 | 190 | 20 759.12 | 11.37 | 79.63 | -0.018 | CN |
FtPinG0005577300.01 | 2 036 | 1 527 | 508 | 54 119.64 | 8.83 | 111.22 | 0.630 | ER |
FtPinG0001944100.01 | 2 849 | 1 251 | 416 | 25 182.57 | 6.30 | 104.35 | 0.468 | ER |
基因编号 Gene ID | α-螺旋 α-helix/% | β-折叠 β-turn/% | 延长链 Extended strand/% | 无规则卷曲 Random coil/% | 跨膜域 Transmembrane domain |
---|---|---|---|---|---|
FtPinG0000184200.01 | 37.02 | 3.64 | 14.88 | 44.46 | 11 |
FtPinG0000812400.01 | 48.35 | 4.40 | 16.48 | 30.77 | 3 |
FtPinG0002608200.01 | 29.34 | 6.16 | 17.03 | 47.46 | 5 |
FtPinG0009584000.01 | 54.05 | 2.60 | 12.72 | 30.64 | 8 |
FtPinG0001943900.01 | 14.86 | 5.41 | 20.27 | 59.46 | 0 |
FtPinG0008441300.01 | 50.00 | 2.86 | 15.24 | 31.90 | 10 |
FtPinG0000342600.01 | 50.68 | 4.39 | 17.23 | 27.70 | 6 |
FtPinG0001943500.01 | 32.11 | 5.26 | 15.79 | 46.84 | 2 |
FtPinG0005577300.01 | 46.06 | 3.94 | 15.16 | 34.84 | 10 |
FtPinG0001944100.01 | 53.91 | 4.35 | 13.04 | 28.70 | 10 |
Table 2 Protein structure of FtSUCs in Tartary buckwheat
基因编号 Gene ID | α-螺旋 α-helix/% | β-折叠 β-turn/% | 延长链 Extended strand/% | 无规则卷曲 Random coil/% | 跨膜域 Transmembrane domain |
---|---|---|---|---|---|
FtPinG0000184200.01 | 37.02 | 3.64 | 14.88 | 44.46 | 11 |
FtPinG0000812400.01 | 48.35 | 4.40 | 16.48 | 30.77 | 3 |
FtPinG0002608200.01 | 29.34 | 6.16 | 17.03 | 47.46 | 5 |
FtPinG0009584000.01 | 54.05 | 2.60 | 12.72 | 30.64 | 8 |
FtPinG0001943900.01 | 14.86 | 5.41 | 20.27 | 59.46 | 0 |
FtPinG0008441300.01 | 50.00 | 2.86 | 15.24 | 31.90 | 10 |
FtPinG0000342600.01 | 50.68 | 4.39 | 17.23 | 27.70 | 6 |
FtPinG0001943500.01 | 32.11 | 5.26 | 15.79 | 46.84 | 2 |
FtPinG0005577300.01 | 46.06 | 3.94 | 15.16 | 34.84 | 10 |
FtPinG0001944100.01 | 53.91 | 4.35 | 13.04 | 28.70 | 10 |
Fig.3 Gene expression hotmap and DEGs expressing analysis of FtSUCs in Tartary buckwheat seedling Ⅰ, 5 d after emergence; Ⅱ, 10 d after emergence; Ⅲ, 15 d after emergence.
[1] | YOON J, CHO L H, TUN W, et al. Sucrose signaling in higher plants[J]. Plant Science, 2021, (302): e110703. |
[2] |
WIND J, SMEEKENS S, HANSON J. Sucrose: metabolite and signaling molecule[J]. Phytochemistry, 2010, 71(14-15): 1610-1614.
DOI URL |
[3] | AOKI N, HIROSE T, FURBANK R T. Sucrose transport in higher plants: from source to sink[J]. Photosynthesis, 2012, (34): 703-729. |
[4] |
BRAUN DM, WANG L, RUAN Y. Understanding and manipulating sucrose phloem loading, unloading, metabolism, and signaling to enhance crop yield and food security[J]. Journal of Experimental Botany, 2014, 65(7): 1713-1735.
DOI URL |
[5] |
BRAUN D M, SLEWINSKI T L. Genetic control of carbon partitioning in grasses: roles of sucrose transporters and tie-dyed loci in phloem loading[J]. Plant Physiology, 2009, 149(1): 71-81.
DOI URL |
[6] |
LALONDE S, WIPF D, FROMMER WB. Transport mechanisms for organic forms of carbon and nitrogen between source and sink[J]. Annual Review of Plant Biology, 2004, 55(1): 341-372.
DOI URL |
[7] |
梁成刚, 陈晴晴, 石桃雄, 等. 荞麦属植物MAPK基因片段序列比较与进化关系研究[J]. 浙江农业学报, 2016, 28(10): 1631-1636.
DOI |
LIANG C G, CHEN Q Q, SHI T X, et al. Sequence analysis of MAPK gene fragment and phylogenetic relationship of genus Fagopyrum[J]. Acta Agriculturae Zhejiangensis, 2016, 28(10): 1631-1636. (in Chinese with English abstract) | |
[8] |
郑俊青, 黎瑞源, 郑冉, 等. 苦荞重组自交系群体粒重,粒形与蛋白组分含量的变异[J]. 浙江农业学报, 2021, 33(4): 565-575.
DOI |
ZHENG J Q, LI R Y, ZHENG R, et al. Variation analysis of grain weight, grain shape and protein content in recombinant inbred lines population of tartary buckwheat[J]. Acta Agriculturae Zhejiangensis, 2021, 33(4):565-575. (in Chinese with English abstract) | |
[9] | 喻武鹃, 汪燕, 梁成刚, 等. 苦荞薄壳种质的光合特性、淀粉合成与产量形成研究[J]. 广西植物, 2020, 40(2):218-225. |
YU W J, WANG Y, LIANG C G, et al. Photosynthetic characteristics, starch synthesis and yield formation of thin-shell Tartary buckwheat[J]. Guihaia, 2020, 40(2): 218-225. (in Chinese with English abstract) | |
[10] | LIAO K, WANG Y, YU W J, et al. Characteristics of starch synthesis,yield and quality provide insights into rice-Tartary buckwheat utilization and improvement[J]. Agricultural Biotechnology, 2020, 9(2): 31-34. |
[11] |
SAUER N, STOLZ J. SUC1 and SUC2: two sucrose transporters from Arabidopsis thaliana; expression and characterization in baker's yeast and identification of the histidine-tagged protein[J]. The Plant Journal, 2010, 6(1): 67-77.
DOI URL |
[12] |
MEYER S. Wounding enhances expression of AtSUC3, a sucrose transporter from Arabidopsis sieve elements and sink tissues[J]. Plant Physiology, 2004, 134(2): 684-693.
DOI URL |
[13] | GONG X, LIU M L, ZHANG L J, et al. Sucrose transporter gene AtSUC4 responds to drought stress by regulating the sucrose distribution and metabolism in Arabidopsis thaliana[J]. Advanced Materials Research, 2013, 765-767(12): 2971-2975. |
[14] |
POMMERRENIG B, POPKO J, HEILMANN M, et al. SUCROSE TRANSPORTER 5 supplies Arabidopsis embryos with biotin and affects triacylglycerol accumulation[J]. The Plant Journal, 2013, 73(3): 392-404.
DOI URL |
[15] |
AOKI N, HIROSE T, SCOFIELD G N, et al. The sucrose transporter gene family in rice[J]. Plant Cell and Physiology, 2003, 44(3): 223-232.
DOI URL |
[16] |
SUN Y, REINDERS A, LAFLEUR K R, et al. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5[J]. Plant and Cell Physiology, 2010, 51(1): 114-122.
DOI URL |
[17] | JYOTIRMAYA M, ANURADHA S, ASHISH R. Sucrose transport and metabolism control carbon partitioning between stem and grain in rice[J]. Journal of Experimental Botany, 2021, 72(12): erab066. |
[18] |
SRIVASTAVA A C, GANESAN S, ISMAIL I O, et al. Functional characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport[J]. Plant Physiology, 2008, 148(1): 200-211.
DOI URL |
[19] |
LIANG C, HIROSE T, OKAMURA M, et al. Phenotypic analyses of rice lse2 and lse3 mutants that exhibit hyperaccumulation of starch in the leaf blades[J]. Rice, 2014, 7(1): 32.
DOI URL |
[20] |
WEISE A A. New subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants[J]. The Plant Cell, 2000, 12(8): 1345-1355.
DOI URL |
[21] |
KÜHN C. A comparison of the sucrose transporter systems of different plant species[J]. Plant Biology, 2003, 5(3): 215-232.
DOI URL |
[1] | CHU Zhigang, TIAN Yunfang. Cloning and bioinformatics analysis of a PEBP family gene from Cymbidium faberi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1679-1691. |
[2] | LIU Pengcheng, ZHANG Ji, QIU Ganyuan, GONG Yu, LI Xuesong, LI Wei, ZHANG Yiyu, LIU Ruoyu. Single nucleotide polymorphism screening and bioinformatics analysis of TBC1D7 gene in Guanling cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1402-1411. |
[3] | LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132. |
[4] | XIA Yuqi, SUN Yu, LIU Zhixin, SUN Ruiqing, YANG Nan, PU Jinji, ZHANG He. Genome-wide identification and bioinformatics analysis of BES1 transcription factor family in mango [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 984-994. |
[5] | FAN Youcun, ZHANG Hongyan, YANG Xusheng, HAN Qian, LIU Yujiao, WU Xuexia. Cloning, bioinformatics analysis and gene expression pattern of VfHKT1; 1 in Vicia faba L. [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 756-765. |
[6] | LI Xiaolan, ZHANG Rui, HAO Lanlan, WANG Hong. Bioinformatics analysis of peach NAC gene family and its expression characteristics in response to low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 766-780. |
[7] | YANG Weijun, DONG Yanlei, WU Qiufang, ZHANG Meiling, HAN Libin, ZHANG Yuanchen. Cloning and expression analysis of AgoATPb gene in cotton-melon aphid, Aphis gossypi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 329-336. |
[8] | XU Jingen, JIN Erhui, WANG Chonglong, GU Youfang, LI Qinggang. Polymorphism and bioinformatics analysis of pig CAST gene [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 17-23. |
[9] | ZHENG Junqing, LI Ruiyuan, ZHENG Ran, LYU Dan, CHEN Qijiao, SHI Taoxiong, CHEN Qingfu. Variation analysis of grain weight, grain shape and protein content in recombinant inbred lines population of tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 565-575. |
[10] | ZHAO Xiuping, WANG Shuang, YAN Xingyi, DUAN Qiang, ZHANG Shuai, CHEN Yongsheng, LI Guorui. Expression, purification and bioinformatics analysis of Magnaporthe oryzae MGG-01005 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 470-478. |
[11] | OUYANG Xiahui, ZHENG Tianyu, XU Wenkai, ZHENG Xiangxiang. Cloning and expression analysis of amLDH gene in Apis mellifera [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2051-2058. |
[12] | MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807. |
[13] | LIANG Liqin, YANG Rui, GAO Gang. Bioinformatics analysis of StUOXs gene family in potato [J]. , 2020, 32(9): 1523-1532. |
[14] | WU Jia, CHEN Lang, JIANG Tao, HUANG Guoming, LI Zhuo, LI Yaodong, ZHANG Li, LIU Lixia. Genetic polymorphism screening of CSF3 gene in dairy cow and its bioinformatics analysis [J]. , 2020, 32(6): 986-993. |
[15] | WANG Yuanhong, XING Xue, LI Chuanfeng, ZHU Jie, WANG Yong, LIU Guangqing. Bioinformatics analysis and prokaryotic expression of FIPV AH1905 strain N gene [J]. , 2020, 32(3): 406-414. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 778
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 428
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||