Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (10): 1797-1807.DOI: 10.3969/j.issn.1004-1524.2021.10.02
• Crop Science • Previous Articles Next Articles
MENG Yaxuan(), SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui*(
)
Received:
2020-12-15
Online:
2021-10-25
Published:
2021-11-02
Contact:
LIU Yinghui
CLC Number:
MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family[J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807.
基因名称 Gene name | 转录名 Transcript name | 位置 Location/bp | 外显子数量 Number of extron | 开放阅读 框长度 Length of open reading fragment/bp | 亚细胞定位 Subcellular location | 蛋白质Protein | ||
---|---|---|---|---|---|---|---|---|
氨基酸 数量 Amino acid number/ aa | 分子量 Molecular weight/ku | 等电点 Isoelec- tric point | ||||||
SiGH5-1 | KQL30310 | Chr01.29829643-29831492 | 3 | 1 850 | 叶绿体Chloroplast | 556 | 59.66 | 6.10 |
SiGH5-2 | KQL31659 | Chr01.39063114-39064817 | 4 | 1 704 | 细胞质Cytoplasm | 410 | 44.71 | 6.12 |
SiGH5-3 | KQL13587 | Chr03.5378556-5381974 | 8 | 3 419 | 细胞壁Cell wall | 541 | 59.52 | 8.00 |
SiGH5-4 | KQL16047 | Chr03.27514790-27518321 | 5 | 3 532 | 叶绿体、细胞质 | 499 | 56.24 | 6.68 |
Chloroplast, cytoplasm | ||||||||
SiGH5-5 | KQL09905 | Chr04.7339963-7344080 | 10 | 4 118 | 细胞壁Cell wall | 539 | 60.40 | 5.25 |
SiGH5-6 | KQL10447 | Chr04.15288452-15292978 | 5 | 4 527 | 细胞壁、细胞质 | 438 | 48.76 | 8.51 |
Cell wall, cytoplasm | ||||||||
SiGH5-7 | KQL06275 | Chr05.32331156-32333994 | 3 | 2 839 | 细胞质Cytoplasm | 428 | 45.85 | 9.34 |
SiGH5-8 | KQL06959 | Chr05.36712724-36715959 | 5 | 3 236 | 细胞质Cytoplasm | 464 | 51.50 | 6.68 |
SiGH5-9 | KQL02231 | Chr06.31102783-31106162 | 10 | 3 380 | 细胞壁Cell wall | 526 | 59.01 | 4.93 |
SiGH5-10 | KQK96704 | Chr07.14261700-14264284 | 2 | 2 585 | 叶绿体Chloroplast | 578 | 62.46 | 9.12 |
SiGH5-11 | KQK97746 | Chr07.23041168-23045609 | 3 | 4 442 | 细胞膜Cell membrane | 557 | 61.17 | 6.47 |
SiGH5-12 | KQK97753 | Chr07.23047335-23050440 | 3 | 3 106 | 叶绿体Chloroplast | 554 | 59.71 | 7.81 |
SiGH5-13 | KQK99686 | Chr07.34214668-34216588 | 5 | 1 921 | 叶绿体、细胞壁 | 419 | 46.91 | 5.10 |
Chloroplast, cell wall | ||||||||
SiGH5-14 | KQK93353 | Chr08.710113-711489 | 5 | 1 377 | 细胞质Cytoplasm | 285 | 31.69 | 5.70 |
SiGH5-15 | KQK86298 | Chr09.1179023-1181193 | 4 | 2 171 | 细胞质Cytoplasm | 480 | 52.38 | 8.66 |
SiGH5-16 | KQK89267 | Chr09.22784605-22789592 | 9 | 4 988 | 细胞壁Cell wall | 492 | 54.71 | 5.16 |
SiGH5-17 | KQK89268 | Chr09.22801684-22805751 | 8 | 4 068 | 细胞壁Cell wall | 511 | 56.29 | 5.10 |
SiGH5-18 | KQK89274 | Chr09.22899258-22905994 | 7 | 6 737 | 细胞壁Cell wall | 451 | 50.76 | 6.38 |
Table 1 GH5 gene family information of millet
基因名称 Gene name | 转录名 Transcript name | 位置 Location/bp | 外显子数量 Number of extron | 开放阅读 框长度 Length of open reading fragment/bp | 亚细胞定位 Subcellular location | 蛋白质Protein | ||
---|---|---|---|---|---|---|---|---|
氨基酸 数量 Amino acid number/ aa | 分子量 Molecular weight/ku | 等电点 Isoelec- tric point | ||||||
SiGH5-1 | KQL30310 | Chr01.29829643-29831492 | 3 | 1 850 | 叶绿体Chloroplast | 556 | 59.66 | 6.10 |
SiGH5-2 | KQL31659 | Chr01.39063114-39064817 | 4 | 1 704 | 细胞质Cytoplasm | 410 | 44.71 | 6.12 |
SiGH5-3 | KQL13587 | Chr03.5378556-5381974 | 8 | 3 419 | 细胞壁Cell wall | 541 | 59.52 | 8.00 |
SiGH5-4 | KQL16047 | Chr03.27514790-27518321 | 5 | 3 532 | 叶绿体、细胞质 | 499 | 56.24 | 6.68 |
Chloroplast, cytoplasm | ||||||||
SiGH5-5 | KQL09905 | Chr04.7339963-7344080 | 10 | 4 118 | 细胞壁Cell wall | 539 | 60.40 | 5.25 |
SiGH5-6 | KQL10447 | Chr04.15288452-15292978 | 5 | 4 527 | 细胞壁、细胞质 | 438 | 48.76 | 8.51 |
Cell wall, cytoplasm | ||||||||
SiGH5-7 | KQL06275 | Chr05.32331156-32333994 | 3 | 2 839 | 细胞质Cytoplasm | 428 | 45.85 | 9.34 |
SiGH5-8 | KQL06959 | Chr05.36712724-36715959 | 5 | 3 236 | 细胞质Cytoplasm | 464 | 51.50 | 6.68 |
SiGH5-9 | KQL02231 | Chr06.31102783-31106162 | 10 | 3 380 | 细胞壁Cell wall | 526 | 59.01 | 4.93 |
SiGH5-10 | KQK96704 | Chr07.14261700-14264284 | 2 | 2 585 | 叶绿体Chloroplast | 578 | 62.46 | 9.12 |
SiGH5-11 | KQK97746 | Chr07.23041168-23045609 | 3 | 4 442 | 细胞膜Cell membrane | 557 | 61.17 | 6.47 |
SiGH5-12 | KQK97753 | Chr07.23047335-23050440 | 3 | 3 106 | 叶绿体Chloroplast | 554 | 59.71 | 7.81 |
SiGH5-13 | KQK99686 | Chr07.34214668-34216588 | 5 | 1 921 | 叶绿体、细胞壁 | 419 | 46.91 | 5.10 |
Chloroplast, cell wall | ||||||||
SiGH5-14 | KQK93353 | Chr08.710113-711489 | 5 | 1 377 | 细胞质Cytoplasm | 285 | 31.69 | 5.70 |
SiGH5-15 | KQK86298 | Chr09.1179023-1181193 | 4 | 2 171 | 细胞质Cytoplasm | 480 | 52.38 | 8.66 |
SiGH5-16 | KQK89267 | Chr09.22784605-22789592 | 9 | 4 988 | 细胞壁Cell wall | 492 | 54.71 | 5.16 |
SiGH5-17 | KQK89268 | Chr09.22801684-22805751 | 8 | 4 068 | 细胞壁Cell wall | 511 | 56.29 | 5.10 |
SiGH5-18 | KQK89274 | Chr09.22899258-22905994 | 7 | 6 737 | 细胞壁Cell wall | 451 | 50.76 | 6.38 |
Fig.5 Structure of GH5 protein A, Secondary structure of GH5 protein. Blue represented α-helix, green represented β-folding, and red represented extended chain. The vertical fringe and peak plots represent the predicted result information of each site, and the same color represents the same structure. B, Tertiary structure of GH5 protein in different species.
项目Item | 谷子Setaria italica |
---|---|
大豆Glycine max | 0.58 |
高粱Sorghum bicolor | 1.56 |
水稻Oryza sativa | 1.09 |
拟南芥Arabidopsis thaliana | 1.76 |
小立碗藓Physcomitrella patens | 1.71 |
玉米Zea mays | 1.48 |
Table 2 RMSD value of tertiary structure of GH5 protein from different species
项目Item | 谷子Setaria italica |
---|---|
大豆Glycine max | 0.58 |
高粱Sorghum bicolor | 1.56 |
水稻Oryza sativa | 1.09 |
拟南芥Arabidopsis thaliana | 1.76 |
小立碗藓Physcomitrella patens | 1.71 |
玉米Zea mays | 1.48 |
Fig.6 Distribution of cis-elements in promoter of GH5 family genes A, Abscisic acid response element; B, Anaerobic induction element; C, Auxin response element; D, Defense and stress response element; E, Light response element; F, Low temperature response element; G, MeJA response element; H, Meristems express response element; I, MYB binding site.
Fig.9 Phylogenetic tree of GH5 proteins from different species Red represented Setaria italica; Black represented Glycine max; Brown represented Sorghum bicolor; Blue represented Oryza sativa; Cyan represented Arabidopsis thaliana; Yellow represented Physcomitrella patens; Green represented Zea mays.
谷子基因名 Gene names of Setaria italica | 玉米基因名 Gene names of Zea mays | 非同义突变概率 Nonsynonymous (Ka) | 同义突变概率 Synonymous (Ks) | 进化指数 Evolution index (Ka/Ks) |
---|---|---|---|---|
SiGH5-1 | Zm00001d050974 | 0.087 0 | 0.208 8 | 0.418 2 |
SiGH5-2 | Zm00001d052158 | 0.173 4 | 0.302 8 | 0.572 8 |
SiGH5-3 | Zm00001d010039 | 0.742 2 | 1.373 5 | 0.540 3 |
SiGH5-4 | Zm00001d035149 | 0.219 3 | 0.420 8 | 0.521 0 |
SiGH5-5 | Zm00001d044877 | 0.131 2 | 0.293 7 | 0.446 6 |
SiGH5-6 | Zm00001d045873 | 0.080 0 | 0.327 8 | 0.246 6 |
SiGH5-7 | Zm00001d043965 | 0.091 0 | 0.282 6 | 0.325 2 |
SiGH5-8 | Zm00001d043443 | 0.064 0 | 0.148 6 | 0.436 5 |
SiGH5-11 | Zm00001d025696 | 0.075 0 | 0.373 3 | 0.201 0 |
SiGH5-12 | Zm00001d003281 | 0.104 4 | 0.196 4 | 0.531 5 |
SiGH5-13 | Zm00001d005052 | 0.077 0 | 0.321 8 | 0.241 2 |
SiGH5-14 | Zm00001d005052 | 0.096 0 | 0.318 9 | 0.303 9 |
SiGH5-15 | Zm00001d034723 | 0.145 5 | 0.201 1 | 0.723 6 |
Table 3 Analysis of evolutionary selection pressure of GH5 family genes in Setaria italica and Sorghum bicolor
谷子基因名 Gene names of Setaria italica | 玉米基因名 Gene names of Zea mays | 非同义突变概率 Nonsynonymous (Ka) | 同义突变概率 Synonymous (Ks) | 进化指数 Evolution index (Ka/Ks) |
---|---|---|---|---|
SiGH5-1 | Zm00001d050974 | 0.087 0 | 0.208 8 | 0.418 2 |
SiGH5-2 | Zm00001d052158 | 0.173 4 | 0.302 8 | 0.572 8 |
SiGH5-3 | Zm00001d010039 | 0.742 2 | 1.373 5 | 0.540 3 |
SiGH5-4 | Zm00001d035149 | 0.219 3 | 0.420 8 | 0.521 0 |
SiGH5-5 | Zm00001d044877 | 0.131 2 | 0.293 7 | 0.446 6 |
SiGH5-6 | Zm00001d045873 | 0.080 0 | 0.327 8 | 0.246 6 |
SiGH5-7 | Zm00001d043965 | 0.091 0 | 0.282 6 | 0.325 2 |
SiGH5-8 | Zm00001d043443 | 0.064 0 | 0.148 6 | 0.436 5 |
SiGH5-11 | Zm00001d025696 | 0.075 0 | 0.373 3 | 0.201 0 |
SiGH5-12 | Zm00001d003281 | 0.104 4 | 0.196 4 | 0.531 5 |
SiGH5-13 | Zm00001d005052 | 0.077 0 | 0.321 8 | 0.241 2 |
SiGH5-14 | Zm00001d005052 | 0.096 0 | 0.318 9 | 0.303 9 |
SiGH5-15 | Zm00001d034723 | 0.145 5 | 0.201 1 | 0.723 6 |
[1] | ILMBERGER N, STREIT W R. Screening for cellulase encoding clones in metagenomic libraries[M]//STREIT W, DANIEL R. Methods in molecular biology. New York, Humana Press, 2017. |
[2] | 江琴. 单双子叶植物中纤维素合成酶基因家族的分子进化研究[D]. 福州: 福建农林大学, 2018. |
JIANG Q. Differential evolution patterns of the cellulose synthase gene superfamily in eudicots and monocots[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018. (in Chinese with English abstract) | |
[3] | 袁红梅, 郭文栋, 赵丽娟, 等. 亚麻纤维素合酶超基因家族的生物信息学及表达分析[J]. 中国农业科学, 2016, 49(23):4656-4668. |
YUAN H M, GUO W D, ZHAO L J, et al. Bioinformatics and expression analysis of the cellulose synthase supergene family in flax[J]. Scientia Agricultura Sinica, 2016, 49(23):4656-4668.(in Chinese with English abstract) | |
[4] |
WANG Y, VILAPLANA F, BRUMER H, et al. Enzymatic characterization of a glycoside hydrolase family 5 subfamily 7 (GH5_7) mannanase from Arabidopsis thaliana[J]. Planta, 2014, 239(3):653-665.
DOI URL |
[5] |
ASPEBORG H, COUTINHO P M, WANG Y, et al. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5)[J]. BMC Evolutionary Biology, 2012, 12:186.
DOI URL |
[6] | 王丽珊. 甘蔗纤维素酶基因家族基因组演化与功能分析[D]. 福州: 福建师范大学, 2015. |
WANG L S. The phylogenetic and function analysis of cellulase gene families in sugarcane[D]. Fuzhou: Fujian Normal University, 2015. (in Chinese with English abstract) | |
[7] |
HENRISSAT B, CLAEYSSENS M, TOMME P, et al. Cellulase families revealed by hydrophobic cluster analysis[J]. Gene, 1989, 81(1):83-95.
DOI URL |
[8] |
YU L L, SUN J Y, LI L G. PtrCel9A6, an endo-1, 4-β-glucanase, is required for cell wall formation during xylem differentiation in Populus[J]. Molecular Plant, 2013, 6(6):1904-1917.
DOI URL |
[9] |
BRUMMELL D A, BIRD C R, SCHUCH W, et al. An endo-1, 4-beta-glucanase expressed at high levels in rapidly expanding tissues[J]. Plant Molecular Biology, 1997, 33(1):87-95.
DOI URL |
[10] |
HE H J, BAI M, TONG P P, et al. CELLULASE6 and MANNANASE7 affect cell differentiation and silique dehiscence[J]. Plant Physiology, 2018, 176(3):2186-2201.
DOI URL |
[11] | 陈茹佳. 陆生植物GH5_11类型纤维素酶基因的起源、进化和功能分化分析[D]. 扬州: 扬州大学, 2018. |
CHEN R J. The origin, evolution and functional divergence of land plant GH5_11 cellulases[D]. Yangzhou: Yangzhou University, 2018. (in Chinese with English abstract) | |
[12] |
DONOHOE B S, WEI H, MITTAL A, et al. Towards an understanding of enhanced biomass digestibility by in planta expression of a family 5 glycoside hydrolase[J]. Scientific Reports, 2017, 7:4389.
DOI URL |
[13] | 王丽珊. 拟南芥和水稻Cel基因家族的生物信息学分析[J]. 闽西职业技术学院学报, 2019, 21(1):101-106. |
WANG L S. Bioinformatic analysis of Cel gene family in Arabidopsis and rice[J]. Journal of Minxi Vocational and Technical College, 2019, 21(1):101-106.(in Chinese with English abstract) | |
[14] |
KENNEDY D. What don’t we know?[J]. Science, 2005, 309(5731):75.
DOI URL |
[15] |
BENNETZEN J L, SCHMUTZ J, WANG H, et al. Reference genome sequence of the model plant Setaria[J]. Nature Biotechnology, 2012, 30(6):555-561.
DOI URL |
[16] |
MISTRY J, CHUGURANSKY S, WILLIAMS L, et al. Pfam: the protein families database in 2021[J]. Nucleic Acids Research, 2021, 49(Database issue):D412-D419.
DOI URL |
[17] |
MARCHLER-BAUER A, ANDERSON J B, CHITSAZ F, et al. CDD: specific functional annotation with the conserved domain database[J]. Nucleic Acids Research, 2009, 37(Database issue):D205-D210.
DOI URL |
[18] |
HUNTER S, APWEILER R, ATTWOOD T K, et al. InterPro: the integrative protein signature database[J]. Nucleic Acids Research, 2009, 37(Database issue):D211-D215.
DOI URL |
[19] |
WANG Y J, DENG D X, SHI Y T, et al. Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes[J]. Molecular Biology Reports, 2012, 39(3):2401-2415.
DOI URL |
[20] | 韩斌, 刘江, 赵兴华, 等. 玉米JAZ基因家族的生物信息学分析[J]. 山西农业科学, 2020, 48(10):1552-1556. |
HAN B, LIU J, ZHAO X H, et al. Bioinformatics analysis of JAZ gene family in maize[J]. Journal of Shanxi Agricultural Sciences, 2020, 48(10):1552-1556.(in Chinese with English abstract) | |
[21] |
BAILEY T L, BODEN M, BUSKE F A, et al. MEME suite: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009, 37(Database issue):W202-W208.
DOI URL |
[22] |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729.
DOI URL |
[23] |
LARKIN M A, BLACKSHIELDS G, BROWN N P, et al. Clustal W and Clustal X version 2.0[J]. Bioinformatics (Oxford, England), 2007, 23(21):2947-2948.
DOI URL |
[24] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8):1194-1202.
DOI URL |
[25] |
SIGRIST C J A, CERUTTI L, DE CASTRO E, et al. PROSITE, a protein domain database for functional characterization and annotation[J]. Nucleic Acids Research, 2010, 38(Database issue):D161-D166.
DOI URL |
[26] | 韩心怡, 刘毅慧. 蛋白质二级结构预测服务器PSRSM[J]. 生物信息学, 2020, 18(2):116-126. |
HAN X Y, LIU Y H. Protein secondary structure prediction Server PSRSM[J]. Chinese Journal of Bioinformatics, 2020, 18(2):116-126.(in Chinese with English abstract) | |
[27] |
KIEFER F, ARNOLD K, KUNZLI M, et al. The SWISS-MODEL repository and associated resources[J]. Nucleic Acids Research, 2009, 37(Database issue):D387-D392.
DOI URL |
[28] | 秦玲, 张鑫, 荣春笑, 等. 苹果多胺氧化酶(PAO)基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(2):262-273. |
QIN L, ZHANG X, RONG C X, et al. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple[J]. Acta Agriculturae Zhejiangensis, 2020, 32(2):262-273.(in Chinese with English abstract) | |
[29] |
HU B, JIN J P, GUO A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8):1296-1297.
DOI URL |
[30] |
DADHEECH T, JAKHESARA S, CHAUHAN P S, et al. Draft genome analysis of lignocellulolytic enzymes producing Aspergillus terreus with structural insight of β-glucosidases through molecular docking approach[J]. International Journal of Biological Macromolecules, 2019, 125:181-190.
DOI URL |
[31] | 郑菲. 真菌第五家族纤维素酶的基因挖掘与分子改良研究[D]. 北京: 北京林业大学, 2019. |
ZHENG F. Gene excavation and molecular engineering of glycoside hydrolyase family 5 cellulase from fungi[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract) | |
[32] | 杨明霞, 连红娟, 王晓芳, 等. 葡萄MPT基因家族鉴定与表达分析[J]. 浙江农业学报, 2020, 32(12):2173-2185. |
YANG M X, LIAN H J, WANG X F, et al. Identification and expression analysis of grape MPT gene family[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12):2173-2185.(in Chinese with English abstract) |
[1] | ZHAO Xiuping, WANG Shuang, YAN Xingyi, DUAN Qiang, ZHANG Shuai, CHEN Yongsheng, LI Guorui. Expression, purification and bioinformatics analysis of Magnaporthe oryzae MGG-01005 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 470-478. |
[2] | HE Jiaqi, ZHAI Ying, ZHANG Jun, QIU Shuang, LI Mingyang, ZHAO Yan, ZHANG Meijuan, MA Tianyi. Cloning and expression analysis of GmDof1.5 in soybean under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 1-7. |
[3] | WANG Weike, LU Na, YAN Jing, SONG Jiling, YUAN Weidong, ZHOU Zufa. Cloning and expression analysis of PpSAMS gene of Pleurotus pulmonarius [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 62-68. |
[4] | LIANG Liqin, YANG Rui, GAO Gang. Bioinformatics analysis of StUOXs gene family in potato [J]. , 2020, 32(9): 1523-1532. |
[5] | WU Jia, CHEN Lang, JIANG Tao, HUANG Guoming, LI Zhuo, LI Yaodong, ZHANG Li, LIU Lixia. Genetic polymorphism screening of CSF3 gene in dairy cow and its bioinformatics analysis [J]. , 2020, 32(6): 986-993. |
[6] | ZHANG Hongtao, LI Yijia, TAN Lian, XU Shuaitao. Image recognition of millet leaf disease based on CS-SVM [J]. , 2020, 32(2): 274-282. |
[7] | ZHONG Jing, TAN Fen, ZHANG Hongquan, XIONG Xiaoqin, HUANG Lixia. Expression pattern and protein structure analysis of maize XYLPs gene family [J]. , 2020, 32(10): 1741-1747. |
[8] | WANG Weike, SONG Jiling, LU Na, YUAN Weidong, YAN Jing, CHEN Guanping. Cloning and expression of the PpFBD1 involved in primordium formation of Pleurotus pulmonarius [J]. , 2020, 32(1): 93-97. |
[9] | LIU Zhengkui, WU Yuan, CHEN Lin, WANG Lei, MU Hongye, ZHU Xuhang, WANG Xiaodu. Prokaryotic expression and bioinformatics analysis of Nsp5 gene of porcine epidemic diarrhea virus [J]. , 2019, 31(4): 532-538. |
[10] | DONG Xinxing, LI Mingli, CUI Yijia, LAN Guoxiang, WANG Xiaoyi, YAN Dawei. Cloning, bioinformatics analysis and tissue expression detection of MCUR1 gene in Saba pig [J]. , 2019, 31(11): 1825-1833. |
[11] | WANG Yushu, WANG Huan, GUO Yu, ZHOU Minghui, CHEN Lu, CHEN Yang. Cloning and expression analysis of β-carotene hydroxylase gene from kale (Brassica oleracea L. var. acephala) [J]. , 2019, 31(1): 80-85. |
[12] | TANG Xiao, DENG Mengsheng, ZOU Xue, Li Liqin, ZHU Yuanzhi, WANG Xiyao. Cloning and expression analysis of StDWF1 in Solanum tuberosum [J]. , 2018, 30(6): 909-917. |
[13] | ZHANG Yang, YAO Wencheng, WANG Bin, LU Lizhi, WANG Zhaoshan, XU Qi, CHANG Guobin, CHEN Guohong. Expression analysis of crest phenotype related genes from crested white duck [J]. , 2018, 30(5): 707-710. |
[14] | LIANG Minhua, YANG Zhenfeng, SU Xinguo, SONG Chunbo. Cloning and expression analysis of phytoene synthase gene from peach fruit [J]. , 2018, 30(3): 399-405. |
[15] | JIA Xiaoping, ZHANG Bo, QUAN Jianzhang, WANG Yongfang, DONG Zhiping, YUAN Xilei, LI Jianfeng. Genome-wide association analysis of lodging resistance of millet in Luoyang and Jilin ecological regions [J]. , 2018, 30(12): 1981-1991. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2064
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1175
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||