Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 708-716.DOI: 10.3969/j.issn.1004-1524.2023.03.24
• Review • Previous Articles Next Articles
XIANG Jiang(), CHENG Jianhui, WEI Lingzhu, WU Jiang*(
)
Received:
2021-10-11
Online:
2023-03-25
Published:
2023-04-07
CLC Number:
XIANG Jiang, CHENG Jianhui, WEI Lingzhu, WU Jiang. Progress on Nep1-like proteins (NLPs) of phytopathogens[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 708-716.
[1] |
KAMOUN S. A catalogue of the effector secretome of plant pathogenic oomycetes[J]. Annual Review of Phytopathology, 2006, 44: 41-60.
PMID |
[2] |
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.
DOI PMID |
[3] |
ROCAFORT M, FUDAL I, MESARICH C H. Apoplastic effector proteins of plant-associated fungi and oomycetes[J]. Current Opinion in Plant Biology, 2020, 56: 9-19.
DOI PMID |
[4] |
BAILEY B A. Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca[J]. Phytopathology, 1995, 85(10): 1250.
DOI URL |
[5] |
PEMBERTON C L, SALMOND G P C. The Nep1-like proteins—a growing family of microbial elicitors of plant necrosis[J]. Molecular Plant Pathology, 2004, 5(4): 353-359.
DOI URL |
[6] | LENARČIČ T, PIRC K, HODNIK V, et al. Molecular basis for functional diversity among microbial Nep1-like proteins[J]. PLoS Pathogens, 2019, 15(9): e1007951. |
[7] |
QUTOB D, KEMMERLING B, BRUNNER F, et al. Phytotoxicity and innate immune responses induced by Nep1-like proteins[J]. The Plant Cell, 2006, 18(12): 3721-3744.
DOI URL |
[8] |
TYLER B M, TRIPATHY S, ZHANG X M, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis[J]. Science, 2006, 313(5791): 1261-1266.
DOI URL |
[9] |
QUTOB D, KAMOUN S, GIJZEN M. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy[J]. The Plant Journal, 2002, 32(3): 361-373.
DOI URL |
[10] | BÖHM H, ALBERT I, OOME S, et al. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis[J]. PLoS Pathogens, 2014, 10(11): e1004491. |
[11] |
OTTMANN C, LUBERACKI B, KÜFNER I, et al. A common toxin fold mediates microbial attack and plant defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25): 10359-10364.
DOI PMID |
[12] |
GIJZEN M, NÜRNBERGER T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa[J]. Phytochemistry, 2006, 67(16): 1800-1807.
DOI URL |
[13] | OOME S, RAAYMAKERS T M, CABRAL A, et al. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16955-16960. |
[14] | MCGOWAN J, FITZPATRICK D A. Genomic, network, and phylogenetic analysis of the oomycete effector arsenal[J]. mSphere, 2017, 2(6): e00408-17. |
[15] |
HORNER N R, GRENVILLE-BRIGGS L J, VAN WEST P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation[J]. Fungal Biology, 2012, 116(1): 24-41.
DOI URL |
[16] |
OOME S, VAN DEN ACKERVEKEN G. Comparative and functional analysis of the widely occurring family of Nep1-like proteins[J]. Molecular Plant-Microbe Interactions: MPMI, 2014, 27(10): 1081-1094.
DOI PMID |
[17] |
FELLBRICH G, ROMANSKI A, VARET A, et al. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis[J]. The Plant Journal, 2002, 32(3): 375-390.
DOI URL |
[18] |
NELSON A J, APEL-BIRKHOLD P C, BAILEY B A. Sequence announcements: GenBank accession No. AF036580[J]. Plant Molecular Biology, 1998, 38: 911-912.
DOI URL |
[19] |
DEAN R A, TALBOT N J, EBBOLE D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434 (7036): 980-986.
DOI |
[20] |
KANNEGANTI T D, HUITEMA E, CAKIR C, et al. Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nep1-like protein PiNPP1.1 and INF1 elicitin[J]. Molecular Plant-Microbe Interactions, 2006, 19(8): 854-863.
DOI URL |
[21] |
FENG B Z, LI P Q. Molecular characterization and functional analysis of the Nep1-like protein-encoding gene from Phytophthora capsici[J]. Genetics and Molecular Research, 2013, 12(2): 1468-1478.
DOI URL |
[22] |
IRIEDA H, MAEDA H, AKIYAMA K, et al. Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic[J]. The Plant Cell, 2014, 26(5): 2265-2281.
DOI URL |
[23] |
AZMI N S A, SINGKARAVANIT-OGAWA S, IKEDA K, et al. Inappropriate expression of an NLP effector in Colletotrichum orbiculare impairs infection on Cucurbitaceae cultivars via plant recognition of the C-terminal region[J]. Molecular Plant-Microbe Interactions, 2018, 31(1): 101-111.
DOI URL |
[24] |
CABRAL A, OOME S, SANDER N, et al. Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region[J]. Molecular Plant-Microbe Interactions, 2012, 25(5): 697-708.
DOI URL |
[25] |
SCHUMACHER S, GROSSER K, VOEGELE R T, et al. Identification and characterization of Nep1-like proteins from the grapevine downy mildew pathogen Plasmopara viticola[J]. Frontiers in Plant Science, 2020, 11: 65.
DOI URL |
[26] |
FENG B Z, ZHU X P, FU L, et al. Characterization of necrosis-inducing NLP proteins in Phytophthora capsici[J]. BMC Plant Biology, 2014, 14: 126.
DOI |
[27] |
SANTHANAM P, VAN ESSE H P, ALBERT I, et al. Evidence for functional diversification within a fungal NEP1-like protein family[J]. Molecular Plant-Microbe Interactions, 2013, 26(3): 278-286.
DOI PMID |
[28] |
DONG S M, KONG G H, QUTOB D, et al. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity[J]. Molecular Plant-Microbe Interactions, 2012, 25(7): 896-909.
DOI URL |
[29] |
ZHOU B J, JIA P S, GAO F, et al. Molecular characterization and functional analysis of a necrosis-and ethylene-inducing, protein-encoding gene family from Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2012, 25(7): 964-975.
DOI URL |
[30] |
CUESTA ARENAS Y, KALKMAN E R I C, SCHOUTEN A, et al. Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology, 2010, 74(5/6): 376-386.
DOI URL |
[31] |
DALLAL BASHI Z, HEGEDUS D D, BUCHWALDT L, et al. Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides (NEPs)[J]. Molecular Plant Pathology, 2010, 11(1): 43-53.
DOI URL |
[32] |
STAATS M, VAN BAARLEN P, SCHOUTEN A, et al. Functional analysis of NLP genes from Botrytis elliptica[J]. Molecular Plant Pathology, 2007, 8(2): 209-214.
DOI URL |
[33] |
BAXTER L, TRIPATHY S, ISHAQUE N, et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome[J]. Science, 2010, 330(6010): 1549-1551.
DOI URL |
[34] |
BAILEY B A, BAE H H, STREM M D, et al. Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya[J]. Plant Physiology and Biochemistry, 2005, 43(6): 611-622.
DOI URL |
[35] |
JENNINGS J C, APEL-BIRKHOLD P C, MOCK N M, et al. Induction of defense responses in tobacco by the protein Nep1 from Fusarium oxysporum[J]. Plant Science, 2001, 161(5): 891-899.
DOI URL |
[36] |
KEATES S E, KOSTMAN T A, ANDERSON J D, et al. Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis[J]. Plant Physiology, 2003, 132(3): 1610-1622.
PMID |
[37] |
VEIT S, WÖRLE J M, NÜRNBERGER T, et al. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco[J]. Plant Physiology, 2001, 127(3): 832-841.
DOI URL |
[38] |
SCHOUTEN A, VAN BAARLEN P, KAN J A L V. Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells[J]. New Phytologist, 2008, 177(2): 493-505.
DOI URL |
[39] |
TEH C Y, PANG C L, TOR X Y, et al. Molecular cloning and functional analysis of a necrosis and ethylene inducing protein (NEP) from Ganoderma boninense[J]. Physiological and Molecular Plant Pathology, 2019, 106: 42-48.
DOI URL |
[40] |
KAPILA J, DE RYCKE R, VAN MONTAGU M, et al. An Agrobacterium-mediated transient gene expression system for intact leaves[J]. Plant Science, 1997, 122(1): 101-108.
DOI URL |
[41] |
BAILEY B A, JENNINGS J C, ANDERSON J D. The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production[J]. Canadian Journal of Microbiology, 1997, 43(1): 45-55.
DOI URL |
[42] |
MATTINEN L, TSHUIKINA M, MÄE A, et al. Identification and characterization of nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora[J]. Molecular Plant-Microbe Interactions, 2004, 17(12): 1366-1375.
DOI URL |
[43] |
JENNINGS J C, APEL-BIRKHOLD P C, BAILEY B A, et al. Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein[J]. Weed Science, 2000, 48(1): 7-14.
DOI URL |
[44] |
MOTTERAM J, KÜFNER I, DELLER S, et al. Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola[J]. Molecular Plant-Microbe Interactions: MPMI, 2009, 22(7): 790-799.
DOI URL |
[45] | KÜFNER I, OTTMANN C, OECKING C, et al. Cytolytic toxins as triggers of plant immune response[J]. Plant Signaling & Behavior, 2009, 4(10): 977-979. |
[46] |
ROJKO N, DALLA SERRA M, MAČEK P, et al. Pore formation by actinoporins, cytolysins from sea anemones[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2016, 1858(3): 446-456.
DOI PMID |
[47] |
LENARČIČ T, ALBERT I, BÖHM H, et al. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins[J]. Science, 2017, 358(6369): 1431-1434.
DOI PMID |
[48] |
CHEN J B, BAO S W, FANG Y L, et al. An LRR-only protein promotes NLP-triggered cell death and disease susceptibility by facilitating oligomerization of NLP in Arabidopsis[J]. New Phytologist, 2021, 232(4): 1808-1822.
DOI URL |
[49] |
PEMBERTON C L, WHITEHEAD N A, SEBAIHIA M, et al. Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium[J]. Molecular Plant-Microbe Interactions, 2005, 18(4): 343-353.
DOI URL |
[50] |
AMSELLEM Z, COHEN B A, GRESSEL J. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control[J]. Nature Biotechnology, 2002, 20 (10): 1035-1039.
PMID |
[51] |
BAILEY B A, APEL-BIRKHOLD P C, LUSTER D G. Expression of NEP 1 by Fusarium oxysporum f. sp. erythroxyli after gene replacement and overexpression using polyethylene glycol-mediated transformation[J]. Phytopathology, 2002, 92(8): 833-841.
DOI URL |
[52] |
FANG Y L, PENG Y L, FAN J. The Nep1-like protein family of Magnaporthe oryzae is dispensable for the infection of rice plants[J]. Scientific Reports, 2017, 7: 4372.
DOI |
[53] |
ZHANG H J, LI D Q, WANG M F, et al. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses[J]. Molecular Plant-Microbe Interactions, 2012, 25(12): 1639-1653.
DOI URL |
[54] |
YANG K, DONG X H, LI J L, et al. Type 2 Nep1-like proteins from the biocontrol oomycete Pythium oligandrum suppress Phytophthora capsici infection in solanaceous plants[J]. Journal of Fungi (Basel, Switzerland), 2021, 7(7): 496.
DOI URL |
[55] |
MACHO A P, ZIPFEL C. Plant PRRs and the activation of innate immune signaling[J]. Molecular Cell, 2014, 54(2): 263-272.
DOI PMID |
[56] |
ALBERT I, BÖHM H, ALBERT M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nature Plants, 2015, 1: 15140.
DOI PMID |
[57] | RAAYMAKERS T M. Activation of plant immunity by microbial Nep1-like protein patterns[D]. Utrecht: Utrecht University, 2018. |
[58] |
REYES-CHIN-WO S, WANG Z, YANG X, et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce[J]. Nature Communications, 2017, 8: 14953.
DOI URL |
[1] | CHEN Xiuxia, CHI Hongshu, XU Binfu, XIE Anhua, FANG Donglan, GONG Hui. Effects of oral Panax notoginseng saponins on immunity of large yellow croaker (Pseudosciaena crocea) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 610-617. |
[2] | ZHANG Qing, XIAO Wenfei, QIU Jieren, CHEN Chuwei, XIN Ya, CHAI Weiguo, RUAN Songlin. Proteomic analysis of black plum leaf treated with immunity inducer [J]. , 2018, 30(5): 787-796. |
[3] | GENG Wen-xue, TANG Bo, HUA Tao, HOU Ji-bo, ZHANG Dao-hua, XU Jia-rong. Improved immune efficiency of inactivated vaccine of pseudorabies virus by immunopotentiator [J]. , 2016, 28(11): 1828-1833. |
[4] | LU Feng1,2, TAN Lei2, WANG Xin2, BAO Shi\|jun2, REN Feng2, ZHANG Fan\|qing2, LIU Fang2, QIU Xu\|sheng2, SONG Cui\|ping2, SUN Ying\|jie2, FU Xiao\|ping1,*, DING Chan2,*. Immune protection and proliferation of T lymphocytes in vitro induced by Mycoplasma synoviae inactivated vaccine [J]. , 2015, 27(6): 944-. |
[5] | WEN Jing;SUN Jian-an;ZHOU Xu-xia;LI Wei-fen;*. Effects of Enterococcus faecium on growth performance, immune and antioxidant function of piglets [J]. , 2011, 23(1): 70-73. |
[6] | LIN Qi-cun;FANG Chang-fu;*;ZHONG Guo-fang;FENG Yan;ZHU Bi-ying. Effect of dietary small peptides on growth and non-specific immunity of Penaeus vannamei larvae [J]. , 2010, 22(5): 590-595. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 627
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 751
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||