Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (3): 708-716.DOI: 10.3969/j.issn.1004-1524.2023.03.24
• Review • Previous Articles Next Articles
XIANG Jiang(
), CHENG Jianhui, WEI Lingzhu, WU Jiang*(
)
Received:2021-10-11
Online:2023-03-25
Published:2023-04-07
CLC Number:
XIANG Jiang, CHENG Jianhui, WEI Lingzhu, WU Jiang. Progress on Nep1-like proteins (NLPs) of phytopathogens[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 708-716.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.03.24
| [1] |
KAMOUN S. A catalogue of the effector secretome of plant pathogenic oomycetes[J]. Annual Review of Phytopathology, 2006, 44: 41-60.
PMID |
| [2] |
CHISHOLM S T, COAKER G, DAY B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4): 803-814.
DOI PMID |
| [3] |
ROCAFORT M, FUDAL I, MESARICH C H. Apoplastic effector proteins of plant-associated fungi and oomycetes[J]. Current Opinion in Plant Biology, 2020, 56: 9-19.
DOI PMID |
| [4] |
BAILEY B A. Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca[J]. Phytopathology, 1995, 85(10): 1250.
DOI URL |
| [5] |
PEMBERTON C L, SALMOND G P C. The Nep1-like proteins—a growing family of microbial elicitors of plant necrosis[J]. Molecular Plant Pathology, 2004, 5(4): 353-359.
DOI URL |
| [6] | LENARČIČ T, PIRC K, HODNIK V, et al. Molecular basis for functional diversity among microbial Nep1-like proteins[J]. PLoS Pathogens, 2019, 15(9): e1007951. |
| [7] |
QUTOB D, KEMMERLING B, BRUNNER F, et al. Phytotoxicity and innate immune responses induced by Nep1-like proteins[J]. The Plant Cell, 2006, 18(12): 3721-3744.
DOI URL |
| [8] |
TYLER B M, TRIPATHY S, ZHANG X M, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis[J]. Science, 2006, 313(5791): 1261-1266.
DOI URL |
| [9] |
QUTOB D, KAMOUN S, GIJZEN M. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy[J]. The Plant Journal, 2002, 32(3): 361-373.
DOI URL |
| [10] | BÖHM H, ALBERT I, OOME S, et al. A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in Arabidopsis[J]. PLoS Pathogens, 2014, 10(11): e1004491. |
| [11] |
OTTMANN C, LUBERACKI B, KÜFNER I, et al. A common toxin fold mediates microbial attack and plant defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25): 10359-10364.
DOI PMID |
| [12] |
GIJZEN M, NÜRNBERGER T. Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa[J]. Phytochemistry, 2006, 67(16): 1800-1807.
DOI URL |
| [13] | OOME S, RAAYMAKERS T M, CABRAL A, et al. Nep1-like proteins from three kingdoms of life act as a microbe-associated molecular pattern in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16955-16960. |
| [14] | MCGOWAN J, FITZPATRICK D A. Genomic, network, and phylogenetic analysis of the oomycete effector arsenal[J]. mSphere, 2017, 2(6): e00408-17. |
| [15] |
HORNER N R, GRENVILLE-BRIGGS L J, VAN WEST P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation[J]. Fungal Biology, 2012, 116(1): 24-41.
DOI URL |
| [16] |
OOME S, VAN DEN ACKERVEKEN G. Comparative and functional analysis of the widely occurring family of Nep1-like proteins[J]. Molecular Plant-Microbe Interactions: MPMI, 2014, 27(10): 1081-1094.
DOI PMID |
| [17] |
FELLBRICH G, ROMANSKI A, VARET A, et al. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis[J]. The Plant Journal, 2002, 32(3): 375-390.
DOI URL |
| [18] |
NELSON A J, APEL-BIRKHOLD P C, BAILEY B A. Sequence announcements: GenBank accession No. AF036580[J]. Plant Molecular Biology, 1998, 38: 911-912.
DOI URL |
| [19] |
DEAN R A, TALBOT N J, EBBOLE D J, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434 (7036): 980-986.
DOI |
| [20] |
KANNEGANTI T D, HUITEMA E, CAKIR C, et al. Synergistic interactions of the plant cell death pathways induced by Phytophthora infestans Nep1-like protein PiNPP1.1 and INF1 elicitin[J]. Molecular Plant-Microbe Interactions, 2006, 19(8): 854-863.
DOI URL |
| [21] |
FENG B Z, LI P Q. Molecular characterization and functional analysis of the Nep1-like protein-encoding gene from Phytophthora capsici[J]. Genetics and Molecular Research, 2013, 12(2): 1468-1478.
DOI URL |
| [22] |
IRIEDA H, MAEDA H, AKIYAMA K, et al. Colletotrichum orbiculare secretes virulence effectors to a biotrophic interface at the primary hyphal neck via exocytosis coupled with SEC22-mediated traffic[J]. The Plant Cell, 2014, 26(5): 2265-2281.
DOI URL |
| [23] |
AZMI N S A, SINGKARAVANIT-OGAWA S, IKEDA K, et al. Inappropriate expression of an NLP effector in Colletotrichum orbiculare impairs infection on Cucurbitaceae cultivars via plant recognition of the C-terminal region[J]. Molecular Plant-Microbe Interactions, 2018, 31(1): 101-111.
DOI URL |
| [24] |
CABRAL A, OOME S, SANDER N, et al. Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region[J]. Molecular Plant-Microbe Interactions, 2012, 25(5): 697-708.
DOI URL |
| [25] |
SCHUMACHER S, GROSSER K, VOEGELE R T, et al. Identification and characterization of Nep1-like proteins from the grapevine downy mildew pathogen Plasmopara viticola[J]. Frontiers in Plant Science, 2020, 11: 65.
DOI URL |
| [26] |
FENG B Z, ZHU X P, FU L, et al. Characterization of necrosis-inducing NLP proteins in Phytophthora capsici[J]. BMC Plant Biology, 2014, 14: 126.
DOI |
| [27] |
SANTHANAM P, VAN ESSE H P, ALBERT I, et al. Evidence for functional diversification within a fungal NEP1-like protein family[J]. Molecular Plant-Microbe Interactions, 2013, 26(3): 278-286.
DOI PMID |
| [28] |
DONG S M, KONG G H, QUTOB D, et al. The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity[J]. Molecular Plant-Microbe Interactions, 2012, 25(7): 896-909.
DOI URL |
| [29] |
ZHOU B J, JIA P S, GAO F, et al. Molecular characterization and functional analysis of a necrosis-and ethylene-inducing, protein-encoding gene family from Verticillium dahliae[J]. Molecular Plant-Microbe Interactions, 2012, 25(7): 964-975.
DOI URL |
| [30] |
CUESTA ARENAS Y, KALKMAN E R I C, SCHOUTEN A, et al. Functional analysis and mode of action of phytotoxic Nep1-like proteins of Botrytis cinerea[J]. Physiological and Molecular Plant Pathology, 2010, 74(5/6): 376-386.
DOI URL |
| [31] |
DALLAL BASHI Z, HEGEDUS D D, BUCHWALDT L, et al. Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides (NEPs)[J]. Molecular Plant Pathology, 2010, 11(1): 43-53.
DOI URL |
| [32] |
STAATS M, VAN BAARLEN P, SCHOUTEN A, et al. Functional analysis of NLP genes from Botrytis elliptica[J]. Molecular Plant Pathology, 2007, 8(2): 209-214.
DOI URL |
| [33] |
BAXTER L, TRIPATHY S, ISHAQUE N, et al. Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome[J]. Science, 2010, 330(6010): 1549-1551.
DOI URL |
| [34] |
BAILEY B A, BAE H H, STREM M D, et al. Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya[J]. Plant Physiology and Biochemistry, 2005, 43(6): 611-622.
DOI URL |
| [35] |
JENNINGS J C, APEL-BIRKHOLD P C, MOCK N M, et al. Induction of defense responses in tobacco by the protein Nep1 from Fusarium oxysporum[J]. Plant Science, 2001, 161(5): 891-899.
DOI URL |
| [36] |
KEATES S E, KOSTMAN T A, ANDERSON J D, et al. Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis[J]. Plant Physiology, 2003, 132(3): 1610-1622.
PMID |
| [37] |
VEIT S, WÖRLE J M, NÜRNBERGER T, et al. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis, and tobacco[J]. Plant Physiology, 2001, 127(3): 832-841.
DOI URL |
| [38] |
SCHOUTEN A, VAN BAARLEN P, KAN J A L V. Phytotoxic Nep1-like proteins from the necrotrophic fungus Botrytis cinerea associate with membranes and the nucleus of plant cells[J]. New Phytologist, 2008, 177(2): 493-505.
DOI URL |
| [39] |
TEH C Y, PANG C L, TOR X Y, et al. Molecular cloning and functional analysis of a necrosis and ethylene inducing protein (NEP) from Ganoderma boninense[J]. Physiological and Molecular Plant Pathology, 2019, 106: 42-48.
DOI URL |
| [40] |
KAPILA J, DE RYCKE R, VAN MONTAGU M, et al. An Agrobacterium-mediated transient gene expression system for intact leaves[J]. Plant Science, 1997, 122(1): 101-108.
DOI URL |
| [41] |
BAILEY B A, JENNINGS J C, ANDERSON J D. The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production[J]. Canadian Journal of Microbiology, 1997, 43(1): 45-55.
DOI URL |
| [42] |
MATTINEN L, TSHUIKINA M, MÄE A, et al. Identification and characterization of nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora[J]. Molecular Plant-Microbe Interactions, 2004, 17(12): 1366-1375.
DOI URL |
| [43] |
JENNINGS J C, APEL-BIRKHOLD P C, BAILEY B A, et al. Induction of ethylene biosynthesis and necrosis in weed leaves by a Fusarium oxysporum protein[J]. Weed Science, 2000, 48(1): 7-14.
DOI URL |
| [44] |
MOTTERAM J, KÜFNER I, DELLER S, et al. Molecular characterization and functional analysis of MgNLP, the sole NPP1 domain-containing protein, from the fungal wheat leaf pathogen Mycosphaerella graminicola[J]. Molecular Plant-Microbe Interactions: MPMI, 2009, 22(7): 790-799.
DOI URL |
| [45] | KÜFNER I, OTTMANN C, OECKING C, et al. Cytolytic toxins as triggers of plant immune response[J]. Plant Signaling & Behavior, 2009, 4(10): 977-979. |
| [46] |
ROJKO N, DALLA SERRA M, MAČEK P, et al. Pore formation by actinoporins, cytolysins from sea anemones[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 2016, 1858(3): 446-456.
DOI PMID |
| [47] |
LENARČIČ T, ALBERT I, BÖHM H, et al. Eudicot plant-specific sphingolipids determine host selectivity of microbial NLP cytolysins[J]. Science, 2017, 358(6369): 1431-1434.
DOI PMID |
| [48] |
CHEN J B, BAO S W, FANG Y L, et al. An LRR-only protein promotes NLP-triggered cell death and disease susceptibility by facilitating oligomerization of NLP in Arabidopsis[J]. New Phytologist, 2021, 232(4): 1808-1822.
DOI URL |
| [49] |
PEMBERTON C L, WHITEHEAD N A, SEBAIHIA M, et al. Novel quorum-sensing-controlled genes in Erwinia carotovora subsp. carotovora: identification of a fungal elicitor homologue in a soft-rotting bacterium[J]. Molecular Plant-Microbe Interactions, 2005, 18(4): 343-353.
DOI URL |
| [50] |
AMSELLEM Z, COHEN B A, GRESSEL J. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control[J]. Nature Biotechnology, 2002, 20 (10): 1035-1039.
PMID |
| [51] |
BAILEY B A, APEL-BIRKHOLD P C, LUSTER D G. Expression of NEP 1 by Fusarium oxysporum f. sp. erythroxyli after gene replacement and overexpression using polyethylene glycol-mediated transformation[J]. Phytopathology, 2002, 92(8): 833-841.
DOI URL |
| [52] |
FANG Y L, PENG Y L, FAN J. The Nep1-like protein family of Magnaporthe oryzae is dispensable for the infection of rice plants[J]. Scientific Reports, 2017, 7: 4372.
DOI |
| [53] |
ZHANG H J, LI D Q, WANG M F, et al. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses[J]. Molecular Plant-Microbe Interactions, 2012, 25(12): 1639-1653.
DOI URL |
| [54] |
YANG K, DONG X H, LI J L, et al. Type 2 Nep1-like proteins from the biocontrol oomycete Pythium oligandrum suppress Phytophthora capsici infection in solanaceous plants[J]. Journal of Fungi (Basel, Switzerland), 2021, 7(7): 496.
DOI URL |
| [55] |
MACHO A P, ZIPFEL C. Plant PRRs and the activation of innate immune signaling[J]. Molecular Cell, 2014, 54(2): 263-272.
DOI PMID |
| [56] |
ALBERT I, BÖHM H, ALBERT M, et al. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nature Plants, 2015, 1: 15140.
DOI PMID |
| [57] | RAAYMAKERS T M. Activation of plant immunity by microbial Nep1-like protein patterns[D]. Utrecht: Utrecht University, 2018. |
| [58] |
REYES-CHIN-WO S, WANG Z, YANG X, et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce[J]. Nature Communications, 2017, 8: 14953.
DOI URL |
| [1] | YANG Lei, WANG Xiaofu, WEI Wei, CHEN Xiaoyun, PENG Cheng, XU Xiaoli, XU Junfeng. The antifungal responses of insects against an entomopathogenic fungi, Beauveria bassiana and their application potential in pest control [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 825-836. |
| [2] | HUANG Zhichu, ZHOU Nihong, LIU Yao, ZHENG Huoqing. Natural products screening with resistance to honeybee viruses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 67-74. |
| [3] | LIU Qi, CAO Yingli, WEI Ningbo, YANG Kankan, LIANG Yueqiao, SONG Xiangjun, SHAO Ying, TU Jian, QI Kezong. Cloning, expression, cellular localization of chicken DDX41 gene and its role in regulation of natural immunity by avian adenovirus type 4 infection [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1028-1036. |
| [4] | CHEN Xiuxia, CHI Hongshu, XU Binfu, XIE Anhua, FANG Donglan, GONG Hui. Effects of oral Panax notoginseng saponins on immunity of large yellow croaker (Pseudosciaena crocea) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 610-617. |
| [5] | ZHANG Qing, XIAO Wenfei, QIU Jieren, CHEN Chuwei, XIN Ya, CHAI Weiguo, RUAN Songlin. Proteomic analysis of black plum leaf treated with immunity inducer [J]. , 2018, 30(5): 787-796. |
| [6] | GENG Wen-xue, TANG Bo, HUA Tao, HOU Ji-bo, ZHANG Dao-hua, XU Jia-rong. Improved immune efficiency of inactivated vaccine of pseudorabies virus by immunopotentiator [J]. , 2016, 28(11): 1828-1833. |
| [7] | LU Feng1,2, TAN Lei2, WANG Xin2, BAO Shi\|jun2, REN Feng2, ZHANG Fan\|qing2, LIU Fang2, QIU Xu\|sheng2, SONG Cui\|ping2, SUN Ying\|jie2, FU Xiao\|ping1,*, DING Chan2,*. Immune protection and proliferation of T lymphocytes in vitro induced by Mycoplasma synoviae inactivated vaccine [J]. , 2015, 27(6): 944-. |
| [8] | WEN Jing;SUN Jian-an;ZHOU Xu-xia;LI Wei-fen;*. Effects of Enterococcus faecium on growth performance, immune and antioxidant function of piglets [J]. , 2011, 23(1): 70-73. |
| [9] | LIN Qi-cun;FANG Chang-fu;*;ZHONG Guo-fang;FENG Yan;ZHU Bi-ying. Effect of dietary small peptides on growth and non-specific immunity of Penaeus vannamei larvae [J]. , 2010, 22(5): 590-595. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||