Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 825-836.DOI: 10.3969/j.issn.1004-1524.20230374
Previous Articles Next Articles
YANG Lei(), WANG Xiaofu, WEI Wei, CHEN Xiaoyun, PENG Cheng, XU Xiaoli, XU Junfeng(
)
Received:
2022-03-23
Online:
2024-04-25
Published:
2024-04-29
Contact:
XU Junfeng
CLC Number:
YANG Lei, WANG Xiaofu, WEI Wei, CHEN Xiaoyun, PENG Cheng, XU Xiaoli, XU Junfeng. The antifungal responses of insects against an entomopathogenic fungi, Beauveria bassiana and their application potential in pest control[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 825-836.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230374
Fig.2 The immune signaling pathways of insects participating in defending against Beauveria bassiana AMP, Antimicrobial peptide; βGRP, β-1,3-glucan binding protein; Cactin, Cactus interactor; Clip-SP, Clip-domain serine protease; CTL, C-type lectin; FADD, Fas-associated death-domain-containing protein; GNBP, Gram-negative binding protein; IKKα, Inhibitor of κB-kinase-α; IKKβ, Inhibitor of κB-kinase-β; IMD, Immune deficiency; JAK, Janus kinases; MyD88, Myeloid differentiation primary response gene 88; NF-κB, Nuclear factor-kappa B; PGRP-L, L-type peptidoglycan recognition protein; PGRP-S, S-type peptidoglycan recognition protein; PIAS, Protein inhibitor of activated STATs; Serpin, Serine protease inhibitor; SOCS, Suppressors of cytokine signaling; SPE, Spatzle; STAT, Signal transducers and activators of transcription; proPO, Prophenoloxidase; TAK1, TGF-beta-activated kinase; Tollip, Toll-interacting protein; TRAF, Tumor necrosis factor receptor-associated factor. Image was made in ©BioRender (biorender.com).
免疫类型 Immune response type | 靶标RNA沉默对昆虫的影响 Effect of target RNA silencing on insect | 基因 Gene | 宿主昆虫 Host | ||
---|---|---|---|---|---|
识别分子 Recognition molecule | 抗菌肽表达降低,对白僵菌的敏感性增加 Decreased the expression profiles of AMPs following fungal challenge and increased susceptibility to the entomopathogenic fungus B. bassiana | 革兰氏阴性菌结合蛋白TmGNBP3 Gram-negative binding protein TmGNBP3 | 黄粉虫 Tenebrio molitor[ | ||
PPO活性降低,导致白僵菌毒力增加 Decreased the activities of immune-related phenoloxidase and increased the virulence of B. bassiana | 革兰氏阴性菌结合蛋白ApGNBP1 Gram-negative binding protein ApGNBP1 | 豌豆蚜 Acyrthosiphon pisum[ | |||
抑制JAK/STAT信号通路,抑制黑化反应 Suppressed the JAK/STAT signaling pathway and the PO cascades | C型凝集素BmCTL5 C-type lectin BmCTL5 | 家蚕 Bombyx mori [ | |||
PPO1活性下降,对真菌抗性降低 Decreased the expression levels of PPO1 and decreased the resistance to fungal challenge | C型凝集素CTL14 C-type lectin CTL14 | 棉铃虫 Helicoverpa armigera[ | |||
丝氨酸蛋白酶 Serine proteases | Toll通路和黑化反应相关基因表达水平上调 Increased the expression profiles of genes belong to Toll pathway and melanization | 丝氨酸蛋白酶CLSP2 Serine protease CLSP2 | 埃及伊蚊 Aedes aegypti[ | ||
抑制细菌和真菌感染产生的黑化反应 Inhibited melanization caused by bacterial and fungal infection | Clip结构域丝氨酸蛋白酶MP1 Clip domain serine protease MP1 | 黑腹果蝇 Drosophila melanogaster [ | |||
主要抑制由真菌感染引起的黑化反应 Inhibited melanization caused by fungal infection | Clip结构域丝氨酸蛋白酶MP2 Clip domain serine protease MP2 | 黑腹果蝇 D. melanogaster [ | |||
PO活性下降、菌丝黑化减少,真菌繁殖加快 Decreased PO activity, abolished completely melanin formation on hyphae and exhibited fungal proliferation | Clip结构域丝氨酸蛋白酶CLIPA8 Clip domain serine protease CLIPA8 | 冈比亚按蚊 Anopheles gambiae [ | |||
共同干扰CLIPB9和CLIPA14基因抑制黑化反应,对真菌易感性增加 Co-silencing of CLIPB9 and CLIPA14 genes reduced melanization and increased susceptibility to the entomopathogenic fungus | Clip结构域丝氨酸蛋白酶CLIPB9和 CLIPA14 Clip domain serine protease CLIPB9 and CLIPA14 | 埃及伊蚊 A. aegypti [ | |||
调节因子 Regulatory factors | Serpin-27A表达降低,对白僵菌的敏感性增加 Decreased induction of Aedes Serpin-27A following fungal challenge and increased susceptibility to the entomopathogenic fungus B. bassiana | 细胞因子Spz1C,受体蛋白Toll5A Cytokine Spatzle Spz1C, Toll receptor Toll5A | 埃及伊蚊 A. aegypti [ | ||
抗菌肽表达降低,对白僵菌的敏感性增加 Decreased the expression profiles of AMPs following fungal challenge and increased susceptibility to the entomopathogenic fungus B. bassiana | 骨髓分化因子TmMyD88,肿瘤坏死因子 受体相关因子4 Myeloid differentiation factor 8 TmMyD88, Tumour necrosis factor receptor-related factor 4 | 黄粉虫 T. molitor [ 埃及伊蚊 A. aegypti [ | |||
对白僵菌的敏感性增加 Increased susceptibility to the entomopathogenic fungus B. bassiana | NF-κB转录因子REL1 NF-κB transcription factor REL1 | 冈比亚按蚊 A. gambiae [ | |||
影响serpin-27表达,抑制抗白僵菌免疫应答 Affected the expression profile of serpin-27 and suppressed the immune response against B. bassiana | NF-κB转录因子AaREL1-A和AaREL1-B NF-κB transcription factor AaREL1-A and AaREL1-B | 埃及伊蚊 A. aegypti [ | |||
死亡率增加 Increased the mortality of the host | NF-κB转录因子Sldorsal NF-κB transcription factor Sldorsal | 斜纹夜蛾 Spodoptera litura [ | |||
白僵菌感染蚊子的真菌增殖和存活时间降低 Reduced fungal proliferation and reduced survival times upon B. bassiana infection | NF-κB转录因子REL2 NF-κB transcription factor REL2 | 埃及伊蚊 A. aegypti [ | |||
阻止REL1的核转录,对白僵菌的抗性增加 Increased resistance to B. bassiana by blocking the nuclear transcription of REL1 | IMD通路的负调节子Caspar A negative regulator of the Imd pathway Caspar | 埃及伊蚊 A. aegypti[ | |||
白僵菌后感染家蚕存活时间下降 Decreased survival rate of silkworm | JAK/STAT调节因子,STAT调节的抗登 革热限制因子DVRF1 Dome Transcription factor of JAK-STAT Dome, STAT-regulated anti-dengue restriction factor DVRF1 | 家蚕 B. mori [ | |||
效应因子 Effectors | 对白僵菌的抗性增加;参与CLSP2介导的抗真菌免疫防御应答 Increased the resistance to the fungal challenge and participated in CLSP2-modulated mosquito antifungal defense | 含硫酯键蛋白TEP22 Thioester-containing protein TEP22 | 埃及伊蚊 A. aegypti [ | ||
PO活性下降、菌丝黑化减少,真菌繁殖加快 Decreased PO activity, abolished completely melanin formation on hyphae and exhibited fungal proliferation | 含硫酯键蛋白TEP1 Thioester-containing protein TEP1 | 冈比亚按蚊 A. gambiae[ | |||
存活率下降,促进真菌繁殖 Reduced survival rate and accelerated fungal proliferation | 抗菌肽Tenecin 3 AMP Tenecin3 | 黄粉虫 T. molitor [ | |||
体表抗菌化合物 Antimicrobial compounds on the | 显著削弱了宿主抵抗白僵菌感染的能力 Significantly compromised host defense against the fungal infection | 几丁质合成酶1基因CHS1 Chitin synthase 1 gene CHS1 | 赤拟谷盗 Tribolium castaneum [ | ||
body surface | 使白僵菌的防御系统完全崩溃 Destroyed antifungal host defense | 漆酶Lac2 Laccase Lac2 | 赤拟谷盗 T. castaneum [ | ||
其他 Others | 促进免疫效应因子的表达,间接抑制家蚕中白僵菌的繁殖 Promoted the expression of immune effectors, and indirectly inhibited the reproduction of B. bassiana in the silkworm | 载脂蛋白III BmApoLp-III Apolipophorin-III BmApoLp-III | 家蚕 B. mori [ | ||
酚氧化酶和溶菌酶活性降低、总血细胞计数减少,存活率下降 Significantly decreased phenoloxidase and lysozyme activity, total haemocyte counts, and survival rate against B. bassiana infection | 章鱼胺受体MsOctfl2R Octopamine receptor MsOctfl2R | 东方黏虫 Mythmina separata[ |
Table 1 The effect of dsRNA on insect defense against Beauveria bassiana
免疫类型 Immune response type | 靶标RNA沉默对昆虫的影响 Effect of target RNA silencing on insect | 基因 Gene | 宿主昆虫 Host | ||
---|---|---|---|---|---|
识别分子 Recognition molecule | 抗菌肽表达降低,对白僵菌的敏感性增加 Decreased the expression profiles of AMPs following fungal challenge and increased susceptibility to the entomopathogenic fungus B. bassiana | 革兰氏阴性菌结合蛋白TmGNBP3 Gram-negative binding protein TmGNBP3 | 黄粉虫 Tenebrio molitor[ | ||
PPO活性降低,导致白僵菌毒力增加 Decreased the activities of immune-related phenoloxidase and increased the virulence of B. bassiana | 革兰氏阴性菌结合蛋白ApGNBP1 Gram-negative binding protein ApGNBP1 | 豌豆蚜 Acyrthosiphon pisum[ | |||
抑制JAK/STAT信号通路,抑制黑化反应 Suppressed the JAK/STAT signaling pathway and the PO cascades | C型凝集素BmCTL5 C-type lectin BmCTL5 | 家蚕 Bombyx mori [ | |||
PPO1活性下降,对真菌抗性降低 Decreased the expression levels of PPO1 and decreased the resistance to fungal challenge | C型凝集素CTL14 C-type lectin CTL14 | 棉铃虫 Helicoverpa armigera[ | |||
丝氨酸蛋白酶 Serine proteases | Toll通路和黑化反应相关基因表达水平上调 Increased the expression profiles of genes belong to Toll pathway and melanization | 丝氨酸蛋白酶CLSP2 Serine protease CLSP2 | 埃及伊蚊 Aedes aegypti[ | ||
抑制细菌和真菌感染产生的黑化反应 Inhibited melanization caused by bacterial and fungal infection | Clip结构域丝氨酸蛋白酶MP1 Clip domain serine protease MP1 | 黑腹果蝇 Drosophila melanogaster [ | |||
主要抑制由真菌感染引起的黑化反应 Inhibited melanization caused by fungal infection | Clip结构域丝氨酸蛋白酶MP2 Clip domain serine protease MP2 | 黑腹果蝇 D. melanogaster [ | |||
PO活性下降、菌丝黑化减少,真菌繁殖加快 Decreased PO activity, abolished completely melanin formation on hyphae and exhibited fungal proliferation | Clip结构域丝氨酸蛋白酶CLIPA8 Clip domain serine protease CLIPA8 | 冈比亚按蚊 Anopheles gambiae [ | |||
共同干扰CLIPB9和CLIPA14基因抑制黑化反应,对真菌易感性增加 Co-silencing of CLIPB9 and CLIPA14 genes reduced melanization and increased susceptibility to the entomopathogenic fungus | Clip结构域丝氨酸蛋白酶CLIPB9和 CLIPA14 Clip domain serine protease CLIPB9 and CLIPA14 | 埃及伊蚊 A. aegypti [ | |||
调节因子 Regulatory factors | Serpin-27A表达降低,对白僵菌的敏感性增加 Decreased induction of Aedes Serpin-27A following fungal challenge and increased susceptibility to the entomopathogenic fungus B. bassiana | 细胞因子Spz1C,受体蛋白Toll5A Cytokine Spatzle Spz1C, Toll receptor Toll5A | 埃及伊蚊 A. aegypti [ | ||
抗菌肽表达降低,对白僵菌的敏感性增加 Decreased the expression profiles of AMPs following fungal challenge and increased susceptibility to the entomopathogenic fungus B. bassiana | 骨髓分化因子TmMyD88,肿瘤坏死因子 受体相关因子4 Myeloid differentiation factor 8 TmMyD88, Tumour necrosis factor receptor-related factor 4 | 黄粉虫 T. molitor [ 埃及伊蚊 A. aegypti [ | |||
对白僵菌的敏感性增加 Increased susceptibility to the entomopathogenic fungus B. bassiana | NF-κB转录因子REL1 NF-κB transcription factor REL1 | 冈比亚按蚊 A. gambiae [ | |||
影响serpin-27表达,抑制抗白僵菌免疫应答 Affected the expression profile of serpin-27 and suppressed the immune response against B. bassiana | NF-κB转录因子AaREL1-A和AaREL1-B NF-κB transcription factor AaREL1-A and AaREL1-B | 埃及伊蚊 A. aegypti [ | |||
死亡率增加 Increased the mortality of the host | NF-κB转录因子Sldorsal NF-κB transcription factor Sldorsal | 斜纹夜蛾 Spodoptera litura [ | |||
白僵菌感染蚊子的真菌增殖和存活时间降低 Reduced fungal proliferation and reduced survival times upon B. bassiana infection | NF-κB转录因子REL2 NF-κB transcription factor REL2 | 埃及伊蚊 A. aegypti [ | |||
阻止REL1的核转录,对白僵菌的抗性增加 Increased resistance to B. bassiana by blocking the nuclear transcription of REL1 | IMD通路的负调节子Caspar A negative regulator of the Imd pathway Caspar | 埃及伊蚊 A. aegypti[ | |||
白僵菌后感染家蚕存活时间下降 Decreased survival rate of silkworm | JAK/STAT调节因子,STAT调节的抗登 革热限制因子DVRF1 Dome Transcription factor of JAK-STAT Dome, STAT-regulated anti-dengue restriction factor DVRF1 | 家蚕 B. mori [ | |||
效应因子 Effectors | 对白僵菌的抗性增加;参与CLSP2介导的抗真菌免疫防御应答 Increased the resistance to the fungal challenge and participated in CLSP2-modulated mosquito antifungal defense | 含硫酯键蛋白TEP22 Thioester-containing protein TEP22 | 埃及伊蚊 A. aegypti [ | ||
PO活性下降、菌丝黑化减少,真菌繁殖加快 Decreased PO activity, abolished completely melanin formation on hyphae and exhibited fungal proliferation | 含硫酯键蛋白TEP1 Thioester-containing protein TEP1 | 冈比亚按蚊 A. gambiae[ | |||
存活率下降,促进真菌繁殖 Reduced survival rate and accelerated fungal proliferation | 抗菌肽Tenecin 3 AMP Tenecin3 | 黄粉虫 T. molitor [ | |||
体表抗菌化合物 Antimicrobial compounds on the | 显著削弱了宿主抵抗白僵菌感染的能力 Significantly compromised host defense against the fungal infection | 几丁质合成酶1基因CHS1 Chitin synthase 1 gene CHS1 | 赤拟谷盗 Tribolium castaneum [ | ||
body surface | 使白僵菌的防御系统完全崩溃 Destroyed antifungal host defense | 漆酶Lac2 Laccase Lac2 | 赤拟谷盗 T. castaneum [ | ||
其他 Others | 促进免疫效应因子的表达,间接抑制家蚕中白僵菌的繁殖 Promoted the expression of immune effectors, and indirectly inhibited the reproduction of B. bassiana in the silkworm | 载脂蛋白III BmApoLp-III Apolipophorin-III BmApoLp-III | 家蚕 B. mori [ | ||
酚氧化酶和溶菌酶活性降低、总血细胞计数减少,存活率下降 Significantly decreased phenoloxidase and lysozyme activity, total haemocyte counts, and survival rate against B. bassiana infection | 章鱼胺受体MsOctfl2R Octopamine receptor MsOctfl2R | 东方黏虫 Mythmina separata[ |
Fig.3 The combination use of nanoparticle delivered dsRNA and Beauveria bassiana formulation for pest control Images was made in ©BioRender (biorender.com).
[1] | NAQQASH M N, GÖKÇE A, BAKHSH A, et al. Insecticide resistance and its molecular basis in urban insect pests[J]. Parasitology Research, 2016, 115(4): 1363-1373. |
[2] | BLANFORD S, CHAN B H K, JENKINS N, et al. Fungal pathogen reduces potential for malaria transmission[J]. Science, 2005, 308(5728): 1638-1641. |
[3] | FARENHORST M, MOUATCHO J C, KIKANKIE C K, et al. Fungal infection counters insecticide resistance in African malaria mosquitoes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17443-17447. |
[4] | WANG C S, WANG S B. Insect pathogenic fungi: genomics, molecular interactions, and genetic improvements[J]. Annual Review of Entomology, 2017, 62: 73-90. |
[5] | QU S, WANG S B. Interaction of entomopathogenic fungi with the host immune system[J]. Developmental & Comparative Immunology, 2018, 83: 96-103. |
[6] | LU H L, ST LEGER R J. Insect immunity to entomopathogenic fungi[M]// Genetics and Molecular Biology of Entomopathogenic Fungi. Amsterdam: Elsevier, 2016: 251-285. |
[7] | MBURU D M, OCHOLA L, MANIANIA N K, et al. Relationship between virulence and repellency of entomopathogenic isolates of Metarhizium anisopliae and Beauveria bassiana to the termite Macrotermes michaelseni[J]. Journal of Insect Physiology, 2009, 55(9): 774-780. |
[8] | HAMILTON C, BULMER M S. Molecular antifungal defenses in subterranean termites: RNA interference reveals in vivo roles of termicins and GNBPs against a naturally encountered pathogen[J]. Developmental & Comparative Immunology, 2012, 36(2): 372-377. |
[9] | LEMAITRE B, HOFFMANN J. The host defense of Drosophila melanogaster[J]. Annual Review of Immunology, 2007, 25: 697-743. |
[10] | TOLEDO A V, ALIPPI A M, DE REMES LENICOV A M M. Growth inhibition of Beauveria bassiana by bacteria isolated from the cuticular surface of the corn leafhopper, Dalbulus maidis and the planthopper, Delphacodes kuscheli, two important vectors of maize pathogens[J]. Journal of Insect Science(Online), 2011, 11: 29. |
[11] | PEDRINI N. Molecular interactions between entomopathogenic fungi (Hypocreales) and their insect host: perspectives from stressful cuticle and hemolymph battlefields and the potential of dual RNA sequencing for future studies[J]. Fungal Biology, 2018, 122(6): 538-545. |
[12] | ALDRICH J. Chemical ecology of the Heteroptera[J]. Annual Review of Entomology, 1988, 33: 211-238. |
[13] | SOSA-GOMEZ D R, BOUCIAS D G, NATION J L. Attachment ofMetarhizium anisopliaeto the southern green stink Bug Nezara viridula Cuticle and fungistatic effect of cuticular lipids and aldehydes[J]. Journal of Invertebrate Pathology, 1997, 69(1): 31-39. |
[14] | PEDRINI N, ORTIZ-URQUIZA A, HUARTE-BONNET C, et al. Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(28): E3651-E3660. |
[15] | GOŁĘBIOWSKI M, CERKOWNIAK M, URBANEK A, et al. Identification and antifungal activity of novel organic compounds found in cuticular and internal lipids of medically important flies[J]. Microbiological Research, 2015, 170: 213-222. |
[16] | KEYHANI N O. Lipid biology in fungal stress and virulence: Entomopathogenic fungi[J]. Fungal Biology, 2018, 122(6): 420-429. |
[17] | GOŁĘBIOWSKI M, CERKOWNIAK M, DAWGUL M, et al. The antifungal activity of the cuticular and internal fatty acid methyl esters and alcohols inCalliphora vomitoria[J]. Parasitology, 2013, 140(8): 972-985. |
[18] | VESTERGAARD S, GILLESPIE A T, BUTT T M, et al. Pathogenicity of the hyphomycete fungi Verticillium lecanii and Metarhizium anisopliae to the western flower thrips, Frankliniella occidentalis[J]. Biocontrol Science and Technology, 1995, 5(2): 185-192. |
[19] | GUO X M, DONG Z M, ZHANG Y, et al. Proteins in the cocoon of silkworm inhibit the growth of Beauveria bassiana[J]. PLoS One, 2016, 11(3): e0151764. |
[20] | YASSINE H, KAMAREDDINE L, OSTA M A. The mosquito melanization response is implicated in defense against the entomopathogenic fungus Beauveria bassiana[J]. PLoS Pathogens, 2012, 8(11): e1003029. |
[21] | HAYAKAWA Y, KATO D, KAMIYA K, et al. Chitin synthase 1 gene is crucial to antifungal host defense of the model beetle, Tribolium castaneum[J]. Journal of Invertebrate Pathology, 2017, 143: 26-34. |
[22] | HAYAKAWA Y, SAWADA M, SEKI M, et al. Involvement of laccase 2 and yellow-e genes in antifungal host defense of the model beetle, Tribolium castaneum[J]. Journal of Invertebrate Pathology, 2018, 151: 41-49. |
[23] | LI Y S, ZHAO P, LIU H W, et al. TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi[J]. Insect Biochemistry and Molecular Biology, 2015, 57: 11-19. |
[24] | LI Y S, LIU H W, ZHU R, et al. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases[J]. Peptides, 2016, 86: 13-23. |
[25] | HILLYER J F. Insect immunology and hematopoiesis[J]. Developmental & Comparative Immunology, 2016, 58: 102-118. |
[26] | BINGGELI O, NEYEN C, POIDEVIN M, et al. Prophenoloxidase activation is required for survival to microbial infections in Drosophila[J]. PLoS Pathogens, 2014, 10(5): e1004067. |
[27] | SADEGHI R, RAEISI N H, JAMSHIDNIA A. Effect of Beauveria bassiana(Bals.-Criv.) on immunity of Sesamia cretica Lederer larvae[J]. International Journal of Tropical Insect Science, 2021, 41(1): 419-423. |
[28] | GAD A A, NADA M S. Effect of entomopathogenic fungi Beauveria bassiana on the cellular immunity and biochemistry of green bug Nezara viridula L[J]. Journal of Biopesticides, 2020, 13(2): 135-144. |
[29] | MA X K, GE Q, TAHA R, et al. Beauveria bassiana ribotoxin (BbRib) induces silkworm cell apoptosis via activating ros stress response[J]. Processes, 2021, 9(8): 1470. |
[30] | DONG Z M, AN L N, LU M Y, et al. SPINK7 recognizes fungi and initiates hemocyte-mediated immune defense against fungal infections[J]. Frontiers in Immunology, 2021, 12: 735497. |
[31] | LIU F F, LIU Z, LI H, et al. CTL 10 has multiple functions in the innate immune responses of the silkworm, Bombyx mori[J]. Developmental & Comparative Immunology, 2022, 127: 104309. |
[32] | KIM C H, SHIN Y P, NOH M Y, et al. An insect multiligand recognition protein functions as an opsonin for the phagocytosis of microorganisms[J]. The Journal of Biological Chemistry, 2010, 285(33): 25243-25250. |
[33] | BLANDIN S, SHIAO S H, MOITA L F, et al. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae[J]. Cell, 2004, 116(5): 661-670. |
[34] | DOSTÁLOVÁ A, ROMMELAERE S, POIDEVIN M, et al. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps[J]. BMC Biology, 2017, 15(1): 1-16. |
[35] | GEISER D L, WINZERLING J J. Insect transferrins: multifunctional proteins[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2012, 1820(3): 437-451. |
[36] | LEE K S, KIM B Y, KIM H J, et al. Transferrin inhibits stress-induced apoptosis in a beetle[J]. Free Radical Biology and Medicine, 2006, 41(7): 1151-1161. |
[37] | KIM B Y, LEE K S, CHOO Y M, et al. Molecular cloning and characterization of a transferrin cDNA from the white-spotted flower chafer, Protaetia brevitarsis[J]. DNA Sequence, 2008, 19(2): 146-150. |
[38] | SHEN D X, JI J Y, ZHANG S S, et al. A short-type peptidoglycan recognition protein 1 (PGRP1) is involved in the immune response in Asian corn borer, Ostrinia furnacalis(Guenée)[J]. International Journal of Molecular Sciences, 2021, 22(15): 8198. |
[39] | YE C, WANG Z W, SHENG Y L, et al. GNBP1 as a potential RNAi target to enhance the virulence of Beauveria bassiana for aphid control[J]. Journal of Pest Science, 2022, 95(1): 87-100. |
[40] | YANG Y T, LEE M R, LEE S J, et al. Tenebrio molitor Gram-negative-binding protein 3 (TmGNBP3) is essential for inducing downstream antifungal Tenecin 1 gene expression against infection with Beauveria bassiana JEF-007[J]. Insect Science, 2018, 25(6): 969-977. |
[41] | GOTTAR M, GOBERT V, MATSKEVICH A A, et al. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors[J]. Cell, 2006, 127(7): 1425-1437. |
[42] | AO J Q, LING E J, YU X Q. Drosophila C-type lectins enhance cellular encapsulation[J]. Molecular Immunology, 2007, 44(10): 2541-2548. |
[43] | GENG T, LU F P, WU H Z, et al. C-type lectin 5, a novel pattern recognition receptor for the JAK/STAT signaling pathway in Bombyx mori[J]. Journal of Invertebrate Pathology, 2021, 179: 107473. |
[44] | CHENG Y, LIN Z, WANG J M, et al. CTL14, a recognition receptor induced in late stage larvae, modulates anti-fungal immunity in cotton bollworm Helicoverpa armigera[J]. Developmental & Comparative Immunology, 2018, 84: 142-152. |
[45] | Whitten M, Tew I, Lee B, et al. A novel role for an insect apolipoprotein (Apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsulation reactions[J]. Journal of Immunology, 2004, 172(4): 2177-2185. |
[46] | AHMED S, ROY M C, CHOI D, et al. HMG-like DSP1 mediates immune responses of the western flower thrips (Frankliniella occidentalis) against Beauveria bassiana, a fungal pathogen[J]. Frontiers in Immunology, 2022, 13: 875239. |
[47] | WANG Y H, HU Y, XING L S, et al. A critical role for CLSP2 in the modulation of antifungal immune response in mosquitoes[J]. PLoS Pathogens, 2015, 11(6): e1004931. |
[48] | VALANNE S, WANG J H, RÄMET M. The Drosophila toll signaling pathway[J]. Journal of Immunology, 2011, 186(2): 649-656. |
[49] | LEMAITRE B, NICOLAS E, MICHAUT L, et al. The dorsoventral regulatory gene cassette spätzle/toll/cactus controls the potent antifungal response in Drosophila adults[J]. Cell, 1996, 86(6): 973-983. |
[50] | RHODES V L, THOMAS M B, MICHEL K. The interplay between dose and immune system activation determines fungal infection outcome in the African malaria mosquito, Anopheles gambiae[J]. Developmental & Comparative Immunology, 2018, 85: 125-133. |
[51] | SHIN S W, KOKOZA V, BIAN G W, et al. REL1, a homologue of Drosophila dorsal, regulates toll antifungal immune pathway in the female mosquito Aedes aegypti[J]. Journal of Biological Chemistry, 2005, 280(16): 16499-16507. |
[52] | SHIN S W, BIAN G W, RAIKHEL A S. A toll receptor and a cytokine, Toll5A and Spz1C, are involved in toll antifungal immune signaling in the mosquito Aedes aegypti[J]. Journal of Biological Chemistry, 2006, 281(51): 39388-39395. |
[53] | WANG Y H, CHANG M M, WANG M, et al. OTU7B modulates the mosquito immune response to Beauveria bassiana infection via deubiquitination of the toll adaptor TRAF4[J]. Microbiology Spectrum, 2023, 11(1): e0312322. |
[54] | LIGOXYGAKIS P, PELTE N, HOFFMANN J A, et al. Activation of Drosophila toll during fungal infection by a blood serine protease[J]. Science, 2002, 297(5578): 114-116. |
[55] | RAMIREZ J L, MUTURI E J, BARLETTA A B F, et al. The Aedes aegypti IMD pathway is a critical component of the mosquito antifungal immune response[J]. Developmental & Comparative Immunology, 2019, 95: 1-9. |
[56] | STÖVEN S, SILVERMAN N, JUNELL A, et al. Caspase-mediated processing of the Drosophila NF-κB factor Relish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5991-5996. |
[57] | GARVER L S, DONG Y M, DIMOPOULOS G. Caspar controls resistance to Plasmodium falciparum in diverse anopheline species[J]. PLoS Pathogens, 2009, 5(3): e1000335. |
[58] | MYLLYMÄKI H, RÄMET M. JAK/STAT pathway in Drosophila immunity[J]. Scandinavian Journal of Immunology, 2014, 79(6): 377-385. |
[59] | DONG Y M, MORTON J C, RAMIREZ J L, et al. The entomopathogenic fungus Beauveria bassiana activate toll and JAK-STAT pathway-controlled effector genes and anti-dengue activity in Aedes aegypti[J]. Insect Biochemistry and Molecular Biology, 2012, 42(2): 126-132. |
[60] | ZHANG Z T, ZHU S Y. Drosomycin, an essential component of antifungal defence in Drosophila[J]. Insect Molecular Biology, 2009, 18(5): 549-556. |
[61] | BOLOURI MOGHADDAM M R, VILCINSKAS A, RAHNAMAEIAN M. The insect-derived antimicrobial peptide metchnikowin targets Fusarium graminearum β(1, 3)glucanosyltransferase Gel1, which is required for the maintenance of cell wall integrity[J]. Biological Chemistry, 2017, 398(4): 491-498. |
[62] | DA SILVA P, JOUVENSAL L, LAMBERTY M, et al. Solution structure of termicin, an antimicrobial peptide from the termite Pseudacanthotermes spiniger[J]. Protein Science: a Publication of the Protein Society, 2003, 12(3): 438-446. |
[63] | BROWN S E, HOWARD A, KASPRZAK A B, et al. The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella[J]. Insect Biochemistry and Molecular Biology, 2008, 38(2): 201-212. |
[64] | LEE Y S, YUN E K, JANG W S, et al. Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella[J]. Insect Molecular Biology, 2004, 13(1): 65-72. |
[65] | MAISTROU S, PARIS V, JENSEN A B, et al. A constitutively expressed antifungal peptide protects Tenebrio molitor during a natural infection by the entomopathogenic fungus Beauveria bassiana[J]. Developmental & Comparative Immunology, 2018, 86: 26-33. |
[66] | LIU F F, DING C, YANG L L, et al. Identification and analysis of two lebocins in the oriental armyworm Mythimna separata[J]. Developmental & Comparative Immunology, 2021, 116: 103962. |
[67] | LÜ D D, GENG T, HOU C X, et al. Expression profiling of Bombyx mori gloverin2 gene and its synergistic antifungal effect with cecropin A against Beauveria bassiana[J]. Gene, 2017, 600: 55-63. |
[68] | SOWA-JASIŁEK A, ZDYBICKA-BARABAS A, STĄCZEK S, et al. Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells[J]. Microbiological Research, 2016, 193: 121-131. |
[69] | WU W M, LIN S, ZHAO Z, et al. Bombyx mori Apolipophorin-III inhibits Beauveria bassiana directly and through regulating expression of genes relevant to immune signaling pathways[J]. Journal of Invertebrate Pathology, 2021, 184: 107647. |
[70] | KONG H L, YUAN L, DONG C L, et al. Immunological regulation by a β-adrenergic-like octopamine receptor gene in crowded larvae of the oriental Armyworm, Mythmina separata[J]. Developmental & Comparative Immunology, 2020, 113: 103802. |
[71] | NAKHLEH J, EL MOUSSAWI L, OSTA M A. The melanization response in insect immunity[M]// Advances in insect physiology. Amsterdam: Elsevier, 2017: 83-109. |
[72] | TANG H P, KAMBRIS Z, LEMAITRE B, et al. Two proteases defining a melanization cascade in the immune system of Drosophila[J]. Journal of Biological Chemistry, 2006, 281(38): 28097-28104. |
[73] | VOLZ J, MULLER H M, ZDANOWICZ A, et al. A genetic module regulates the melanization response of Anopheles to Plasmodium[J]. Cellular Microbiology, 2006, 8(9): 1392-1405. |
[74] | JI Y N, LU T F, ZOU Z, et al. Aedes aegypti CLIPB9 activates prophenoloxidase-3 in the presence of CLIPA14 after fungal infection[J]. Frontiers in Immunology, 2022, 13: 927322. |
[75] | WANG Y, JIANG H, CHENG Y, et al. Activation of Aedes aegypti prophenoloxidase-3 and its role in the immune response against entomopathogenic fungi[J]. Insect Molecular Biology, 2017, 26(5): 552-563. |
[76] | ST LEGER R, JOSHI L, BIDOCHKA M J, et al. Construction of an improved mycoinsecticide overexpressing a toxic protease[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(13): 6349-6354. |
[77] | KEYHANI N O. Using host molecules to increase fungal virulence for biological control of insects[J]. Virulence, 2012, 3(4): 415-417. |
[78] | YANG L Z, KEYHANI N O, TANG G R, et al. Expression of a toll signaling regulator serpin in a mycoinsecticide for increased virulence[J]. Applied and Environmental Microbiology, 2014, 80(15): 4531-4539. |
[79] | BAUM J A, BOGAERT T, CLINTON W, et al. Control of coleopteran insect pests through RNA interference[J]. Nature Biotechnology, 2007, 25(11): 1322-1326. |
[80] | ZHANG J, YE C, WANG Z G, et al. DsRNAs spray enhanced the virulence of entomopathogenic fungi Beauveria bassiana in aphid control[J]. Journal of Pest Science, 2023, 96(1): 241-251. |
[81] | JIN S X, SINGH N D, LI L B, et al. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa zea larval development and pupation[J]. Plant Biotechnology Journal, 2015, 13(3): 435-446. |
[82] | HE B C, CHU Y A, YIN M Z, et al. Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests[J]. Advanced Materials, 2013, 25(33): 4580-4584. |
[83] | CAI Y Y, GUO Z M, MA C P, et al. Knockdown of dorsal/relish increases larvae susceptibility to microbes in Spodoptera litura[J]. Journal of Asia-Pacific Entomology, 2019, 22(1): 87-95. |
[1] | LU Ziqi, WANG Jing, ZHANG Zhen, WANG Jiaoyu, SUN Guocang, LIN Fucheng. Research progress of biopesticides based on RNAi [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 968-977. |
[2] | ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||