Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 811-824.DOI: 10.3969/j.issn.1004-1524.20230535
Previous Articles Next Articles
CHEN Xiaojuan1(), LUO Jun1, WANG Fumin1, LI Tuojian1, QU Yan1,2,3,*(
)
Received:
2023-04-26
Online:
2024-04-25
Published:
2024-04-29
Contact:
QU Yan
CLC Number:
CHEN Xiaojuan, LUO Jun, WANG Fumin, LI Tuojian, QU Yan. Excavation of key genes for yellow flower formation in Meconopsis integrifolia[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 811-824.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230535
实验材料 Experimental materials | 开花时期 Flowering period | 编号 Number | 皇家比色卡色号 Royal color card number | 采集地 Collection location | 经纬度 Latitude and Longitude |
---|---|---|---|---|---|
全缘叶绿绒蒿 | 花蕾期Budding period | P1 | YELLOW-GREEN 145D | 云南省丽江市玉龙雪山 | 27°0'10″N, |
M. integrifolia | 初开期Initial opening period | P2 | YELLOW-GREEN 150D | Jade Dragon Snow Mountain, | 100°10'56″E |
盛花期Blooming period | P3 | YELLOW-GREEN 150B | Lijiang City, Yunnan Province |
Table 1 M. integrifolia petal collection information table
实验材料 Experimental materials | 开花时期 Flowering period | 编号 Number | 皇家比色卡色号 Royal color card number | 采集地 Collection location | 经纬度 Latitude and Longitude |
---|---|---|---|---|---|
全缘叶绿绒蒿 | 花蕾期Budding period | P1 | YELLOW-GREEN 145D | 云南省丽江市玉龙雪山 | 27°0'10″N, |
M. integrifolia | 初开期Initial opening period | P2 | YELLOW-GREEN 150D | Jade Dragon Snow Mountain, | 100°10'56″E |
盛花期Blooming period | P3 | YELLOW-GREEN 150B | Lijiang City, Yunnan Province |
样本 Sample | 原始序列 Raw reads | 过滤后序列 Clean reads | 过滤后的碱基 Clean bases/GB | 错误率 Error rate/% | Q20/% | Q30/% | GC/% |
---|---|---|---|---|---|---|---|
QYY-P1-1 | 46 105 634 | 45 312 642 | 6.80 | 0.03 | 97.27 | 92.42 | 41.41 |
QYY-P1-2 | 46 446 078 | 45 552 808 | 6.83 | 0.03 | 97.53 | 93.02 | 41.65 |
QYY-P1-3 | 46 078 118 | 45 182 696 | 6.78 | 0.03 | 97.26 | 92.44 | 41.62 |
QYY-P2-1 | 44 529 162 | 43 227 950 | 6.48 | 0.03 | 97.30 | 92.56 | 41.13 |
QYY-P2-2 | 47 350 222 | 46 244 742 | 6.94 | 0.03 | 97.30 | 92.42 | 41.16 |
QYY-P2-3 | 48 324 836 | 47 314 210 | 7.10 | 0.03 | 97.72 | 93.41 | 40.90 |
QYY-P3-1 | 48 823 172 | 47 635 926 | 7.15 | 0.03 | 97.34 | 92.59 | 41.23 |
QYY-P3-2 | 46 197 126 | 44 753 484 | 6.71 | 0.03 | 97.21 | 92.39 | 41.18 |
QYY-P3-3 | 48 061 136 | 46 960 540 | 7.04 | 0.03 | 97.51 | 92.97 | 41.03 |
Table 2 Transcriptome data quality information for M. integrifolia
样本 Sample | 原始序列 Raw reads | 过滤后序列 Clean reads | 过滤后的碱基 Clean bases/GB | 错误率 Error rate/% | Q20/% | Q30/% | GC/% |
---|---|---|---|---|---|---|---|
QYY-P1-1 | 46 105 634 | 45 312 642 | 6.80 | 0.03 | 97.27 | 92.42 | 41.41 |
QYY-P1-2 | 46 446 078 | 45 552 808 | 6.83 | 0.03 | 97.53 | 93.02 | 41.65 |
QYY-P1-3 | 46 078 118 | 45 182 696 | 6.78 | 0.03 | 97.26 | 92.44 | 41.62 |
QYY-P2-1 | 44 529 162 | 43 227 950 | 6.48 | 0.03 | 97.30 | 92.56 | 41.13 |
QYY-P2-2 | 47 350 222 | 46 244 742 | 6.94 | 0.03 | 97.30 | 92.42 | 41.16 |
QYY-P2-3 | 48 324 836 | 47 314 210 | 7.10 | 0.03 | 97.72 | 93.41 | 40.90 |
QYY-P3-1 | 48 823 172 | 47 635 926 | 7.15 | 0.03 | 97.34 | 92.59 | 41.23 |
QYY-P3-2 | 46 197 126 | 44 753 484 | 6.71 | 0.03 | 97.21 | 92.39 | 41.18 |
QYY-P3-3 | 48 061 136 | 46 960 540 | 7.04 | 0.03 | 97.51 | 92.97 | 41.03 |
数据库 Database | 注释到的基因数量 Number of genes | 占比 Percentage/% |
---|---|---|
KEGG | 76 662 | 44.60 |
Nr | 97 732 | 56.85 |
SwissProt | 70 402 | 40.95 |
TrEMBL | 103 886 | 60.43 |
KOG | 61 267 | 35.64 |
GO | 87 982 | 51.18 |
Pfam | 51 596 | 30.01 |
Annotated in at least | 106 907 | 62.19 |
one Database | ||
Total Unigenes | 171 902 | 100 |
Table 3 Annotations to transcripts in the seven major databases
数据库 Database | 注释到的基因数量 Number of genes | 占比 Percentage/% |
---|---|---|
KEGG | 76 662 | 44.60 |
Nr | 97 732 | 56.85 |
SwissProt | 70 402 | 40.95 |
TrEMBL | 103 886 | 60.43 |
KOG | 61 267 | 35.64 |
GO | 87 982 | 51.18 |
Pfam | 51 596 | 30.01 |
Annotated in at least | 106 907 | 62.19 |
one Database | ||
Total Unigenes | 171 902 | 100 |
Fig.6 Key DEGs and associated metabolites in flavonoid and flavonol biosynthetic pathway The red dotted box shows the partial pathway of flavonol biosynthesis. CHS, Chalcone synthase; CHI, Chalcone isomerase; F3H, Naringenin 3-dioxygenase; FLS, Flavonol synthase; F3'H, Flavonoid 3'-hydroxylase; DFR, Flavanone 4-reductase; ANS, Anthocyanidin synthase; FG3, Galactoside glucosyltransferase.
基因 Gene name | 基因ID Gene ID | 蛋白长度 Protein length/aa | 等电点 Isoelectric point | 分子量 Molecular weight/u | 所属拟南芥亚族 The subgroup of Arabidopsis to which the gene belongs |
---|---|---|---|---|---|
MiMYB1 | Cluster-13873.16 | 1 185 | 9.35 | 131 836.98 | — |
MiMYB2 | Cluster-73976.7 | 570 | 6.33 | 63 623.76 | — |
MiMYB3 | Cluster-74122.1 | 501 | 5.89 | 55 023.13 | — |
MiMYB4 | Cluster-46647.219 | 271 | 8.59 | 30 734.68 | S4 |
MiMYB5 | Cluster-176.1 | 257 | 9.20 | 29 366.95 | — |
MiMYB6 | Cluster-24930.0 | 352 | 7.76 | 39 557.77 | S9 |
MiMYB7 | Cluster-26024.6 | 371 | 9.37 | 42 556.11 | — |
MiMYB8 | Cluster-26024.7 | 354 | 9.32 | 40 353.59 | — |
MiMYB9 | Cluster-26960.10 | 357 | 6.01 | 39 008.3 | — |
MiMYB10 | Cluster-28521.4 | 297 | 5.58 | 33 656.54 | S11 |
MiMYB11 | Cluster-29061.0 | 355 | 5.70 | 40 225.53 | S11 |
MiMYB12 | Cluster-41024.1 | 255 | 9.00 | 28 447.39 | — |
MiMYB13 | Cluster-42663.2 | 429 | 9.35 | 47 588.58 | — |
MiMYB14 | Cluster-43725.2 | 130 | 6.17 | 14 861.21 | S19 |
MiMYB15 | Cluster-43725.4 | 209 | 6.59 | 23 973.62 | S19 |
MiMYB16 | Cluster-74557.6 | 791 | 5.47 | 86 693.98 | — |
MiMYB17 | Cluster-48749.21 | 294 | 8.85 | 32 860.93 | — |
MiMYB18 | Cluster-54127.0 | 165 | 4.38 | 18 843.61 | — |
MiMYB19 | Cluster-54127.1 | 250 | 4.90 | 28 578.83 | — |
MiMYB20 | Cluster-54127.5 | 165 | 4.38 | 18 843.61 | — |
MiMYB21 | Cluster-56396.9 | 514 | 6.76 | 52 138.66 | S13 |
MiMYB22 | Cluster-56419.0 | 414 | 4.87 | 45 932.63 | — |
MiMYB23 | Cluster-58089.0 | 220 | 9.97 | 24 934.41 | — |
MiMYB24 | Cluster-59054.5 | 629 | 6.47 | 71 492.12 | — |
MiMYB25 | Cluster-59054.7 | 583 | 5.65 | 66 005.51 | — |
MiMYB26 | Cluster-60970.0 | 420 | 8.72 | 41 583.2 | S22 |
MiMYB27 | Cluster-61134.0 | 209 | 8.36 | 23 333.70 | — |
MiMYB28 | Cluster-73421.2 | 310 | 5.28 | 34 749.97 | — |
MiMYB29 | Cluster-61134.9 | 137 | 5.61 | 14 979.42 | — |
MiMYB30 | Cluster-61178.1 | 266 | 5.13 | 30 023.11 | S16 |
MiMYB31 | Cluster-64347.0 | 244 | 8.38 | 27 986.6 | S18 |
MiMYB32 | Cluster-6447.11 | 115 | 5.88 | 13 429.9 | S20 |
MiMYB33 | Cluster-6447.2 | 349 | 5.00 | 40 058.43 | S20 |
MiMYB34 | Cluster-6447.5 | 115 | 5.88 | 13 429.90 | S20 |
MiMYB35 | Cluster-66523.6 | 508 | 9.27 | 56 339.69 | — |
MiMYB36 | Cluster-67045.0 | 479 | 9.15 | 53 421.65 | — |
MiMYB37 | Cluster-67577.0 | 265 | 7.22 | 30 531.08 | — |
MiMYB38 | Cluster-67577.1 | 372 | 9.30 | 42 471.57 | S6 |
MiMYB39 | Cluster-67577.2 | 243 | 9.72 | 28 100.98 | S6 |
MiMYB40 | Cluster-69149.2 | 144 | 4.67 | 16 543.61 | — |
MiMYB41 | Cluster-69645.1 | 278 | 9.30 | 31 487.15 | — |
MiMYB42 | Cluster-69645.5 | 277 | 9.37 | 31 357.03 | — |
MiMYB43 | Cluster-70083.7 | 208 | 9.27 | 22 811.18 | — |
MiMYB44 | Cluster-69949.7 | 302 | 7.20 | 32 368.05 | — |
MiMYB45 | Cluster-70083.0 | 208 | 9.42 | 22 879.34 | — |
Table 4 Information of R2R3 MYB genes in M. integrifolia
基因 Gene name | 基因ID Gene ID | 蛋白长度 Protein length/aa | 等电点 Isoelectric point | 分子量 Molecular weight/u | 所属拟南芥亚族 The subgroup of Arabidopsis to which the gene belongs |
---|---|---|---|---|---|
MiMYB1 | Cluster-13873.16 | 1 185 | 9.35 | 131 836.98 | — |
MiMYB2 | Cluster-73976.7 | 570 | 6.33 | 63 623.76 | — |
MiMYB3 | Cluster-74122.1 | 501 | 5.89 | 55 023.13 | — |
MiMYB4 | Cluster-46647.219 | 271 | 8.59 | 30 734.68 | S4 |
MiMYB5 | Cluster-176.1 | 257 | 9.20 | 29 366.95 | — |
MiMYB6 | Cluster-24930.0 | 352 | 7.76 | 39 557.77 | S9 |
MiMYB7 | Cluster-26024.6 | 371 | 9.37 | 42 556.11 | — |
MiMYB8 | Cluster-26024.7 | 354 | 9.32 | 40 353.59 | — |
MiMYB9 | Cluster-26960.10 | 357 | 6.01 | 39 008.3 | — |
MiMYB10 | Cluster-28521.4 | 297 | 5.58 | 33 656.54 | S11 |
MiMYB11 | Cluster-29061.0 | 355 | 5.70 | 40 225.53 | S11 |
MiMYB12 | Cluster-41024.1 | 255 | 9.00 | 28 447.39 | — |
MiMYB13 | Cluster-42663.2 | 429 | 9.35 | 47 588.58 | — |
MiMYB14 | Cluster-43725.2 | 130 | 6.17 | 14 861.21 | S19 |
MiMYB15 | Cluster-43725.4 | 209 | 6.59 | 23 973.62 | S19 |
MiMYB16 | Cluster-74557.6 | 791 | 5.47 | 86 693.98 | — |
MiMYB17 | Cluster-48749.21 | 294 | 8.85 | 32 860.93 | — |
MiMYB18 | Cluster-54127.0 | 165 | 4.38 | 18 843.61 | — |
MiMYB19 | Cluster-54127.1 | 250 | 4.90 | 28 578.83 | — |
MiMYB20 | Cluster-54127.5 | 165 | 4.38 | 18 843.61 | — |
MiMYB21 | Cluster-56396.9 | 514 | 6.76 | 52 138.66 | S13 |
MiMYB22 | Cluster-56419.0 | 414 | 4.87 | 45 932.63 | — |
MiMYB23 | Cluster-58089.0 | 220 | 9.97 | 24 934.41 | — |
MiMYB24 | Cluster-59054.5 | 629 | 6.47 | 71 492.12 | — |
MiMYB25 | Cluster-59054.7 | 583 | 5.65 | 66 005.51 | — |
MiMYB26 | Cluster-60970.0 | 420 | 8.72 | 41 583.2 | S22 |
MiMYB27 | Cluster-61134.0 | 209 | 8.36 | 23 333.70 | — |
MiMYB28 | Cluster-73421.2 | 310 | 5.28 | 34 749.97 | — |
MiMYB29 | Cluster-61134.9 | 137 | 5.61 | 14 979.42 | — |
MiMYB30 | Cluster-61178.1 | 266 | 5.13 | 30 023.11 | S16 |
MiMYB31 | Cluster-64347.0 | 244 | 8.38 | 27 986.6 | S18 |
MiMYB32 | Cluster-6447.11 | 115 | 5.88 | 13 429.9 | S20 |
MiMYB33 | Cluster-6447.2 | 349 | 5.00 | 40 058.43 | S20 |
MiMYB34 | Cluster-6447.5 | 115 | 5.88 | 13 429.90 | S20 |
MiMYB35 | Cluster-66523.6 | 508 | 9.27 | 56 339.69 | — |
MiMYB36 | Cluster-67045.0 | 479 | 9.15 | 53 421.65 | — |
MiMYB37 | Cluster-67577.0 | 265 | 7.22 | 30 531.08 | — |
MiMYB38 | Cluster-67577.1 | 372 | 9.30 | 42 471.57 | S6 |
MiMYB39 | Cluster-67577.2 | 243 | 9.72 | 28 100.98 | S6 |
MiMYB40 | Cluster-69149.2 | 144 | 4.67 | 16 543.61 | — |
MiMYB41 | Cluster-69645.1 | 278 | 9.30 | 31 487.15 | — |
MiMYB42 | Cluster-69645.5 | 277 | 9.37 | 31 357.03 | — |
MiMYB43 | Cluster-70083.7 | 208 | 9.27 | 22 811.18 | — |
MiMYB44 | Cluster-69949.7 | 302 | 7.20 | 32 368.05 | — |
MiMYB45 | Cluster-70083.0 | 208 | 9.42 | 22 879.34 | — |
Fig.7 Functional prediction of M. Integrifolia R2R3-MYB and its expression heat map A, Phylogenetic analysis of the R2R3-MYB gene families in M. integrifolia and A. thaliana; B, Heat map of R2R3-MYB expression of M. integrifolia.
Fig.8 Comparison of candidate R2R3-MYB transcription factors in multiple sequences A. Comparison of amino acid sequence homology of MiMYB4 with other MYB proteins; B. Comparison of amino acid sequence homology of MiMBY38, MiMYB39 with other MYB proteins.
Fig.9 Correlation analysis of flower color-related structural genes and transcription factors in M. integrifolia. A, Correlation analysis of flower color-related structural genes and transcription factors in M. integrifolia; B, Interaction network between flower color-related structural genes and transcription factors in M. integrifolia. Red is transcription factors, blue is structural genes, solid lines represent positive correlations, dashed lines represent negative correlations, and the larger the circle and the more nodes, the stronger the correlation.
[1] | SULAIMAN I M, BABU C R. Ecological studies on five species of endangered Himalayan poppy, Meconopsis(Papaveraceae)[J]. Botanical Journal of the Linnean Society, 1996, 121(2): 169-176. |
[2] | 龚宇, 周蕙祯, 陈胡兰. 近十年绿绒蒿属药用植物的研究进展[J]. 中药材, 2020, 43(3): 758-763. |
GONG Y, ZHOU H Z, CHEN H L. Research progress of medicinal plants of Meconopsis in recent ten years[J]. Journal of Chinese Medicinal Materials, 2020, 43(3): 758-763. (in Chinese with English abstract) | |
[3] | FAN J P, WANG P, WANG X B, et al. Induction of mitochondrial dependent apoptosis in human leukemia K562 cells by Meconopsis integrifolia: a species from traditional Tibetan medicine[J]. Molecules, 2015, 20(7): 11981-11993. |
[4] | 黄艳菲, 蔡旭, 冉波, 等. 基于谱效关系的藏药材全缘叶绿绒蒿全草(非花入药部位)抗氧化质量标志物初步研究[J]. 中草药, 2020, 51(17): 4521-4530. |
HUANG Y F, CAI X, RAN B, et al. Preliminary discovery of quality marker of herb Meconopsis integrifolia(non flower parts) based on spectrum-effect relationship[J]. Chinese Traditional and Herbal Drugs, 2020, 51(17): 4521-4530. (in Chinese with English abstract) | |
[5] | 何静娟, 范燕萍. 观赏植物花色相关的类胡萝卜素组成及代谢调控研究进展[J]. 园艺学报, 2022, 49(5): 1162-1172. |
HE J J, FAN Y P. Progress in composition and metabolic regulation of carotenoids related to floral color[J]. Acta Horticulturae Sinica, 2022, 49(5): 1162-1172. (in Chinese with English abstract) | |
[6] | 黄金霞, 王亮生, 李晓梅, 等. 花色变异的分子基础与进化模式研究进展[J]. 植物学通报, 2006, 41(4): 321-333. |
HUANG J X, WANG L S, LI X M, et al. Advances in molecular basis and evolution of floral color variation[J]. Chinese Bulletin of Botany, 2006, 41(4): 321-333. (in Chinese with English abstract) | |
[7] | 周琳, 王雁, 彭镇华. 黄色花形成机制及基因工程研究进展[J]. 林业科学, 2009, 45(2): 111-119. |
ZHOU L, WANG Y, PENG Z H. Advances in study on formation mechanism and genetic engineering of yellow flowers[J]. Scientia Silvae Sinicae, 2009, 45(2): 111-119. (in Chinese with English abstract) | |
[8] | TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733-749. |
[9] | TIAN J, HAN Z Y, ZHANG J, et al. The balance of expression of dihydroflavonol 4-reductase and flavonol synthase regulates flavonoid biosynthesis and red foliage coloration in crabapples[J]. Scientific Reports, 2015, 5: 12228. |
[10] | HICHRI I, BARRIEU F, BOGS J, et al. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway[J]. Journal of Experimental Botany, 2011, 62(8): 2465-2483. |
[11] | SPELT C, QUATTROCCHIO F, MOL J, et al. ANTHOCYANIN1 of petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms[J]. The Plant Cell, 2002, 14(9): 2121-2135. |
[12] | 陈丽琦, 严朋飞, 贾维嘉, 等. 威氏绿绒蒿(Meconopsis wilsonii)花色相关基因MwF3H的克隆及表达分析[J]. 基因组学与应用生物学, 2022, 41(4): 854-861. |
CHEN L Q, YAN P F, JIA W J, et al. Cloning and expression analysis of flower color related gene MwF3H from Meconopsis wilsonii[J]. Genomics and Applied Biology, 2022, 41(4): 854-861. (in Chinese with English abstract) | |
[13] | 严朋飞, 张莹欣, 贾维嘉, 等. 威氏绿绒蒿MwF3'H基因克隆与表达分析[J]. 分子植物育种, 2022, 20(19): 6382-6387. |
YAN P F, ZHANG Y X, JIA W J, et al. Cloning and expression analysis of flavonoid 3'-hydroxylase gene from Meconopsis wilsonii[J]. Molecular Plant Breeding, 2022, 20(19): 6382-6387. (in Chinese with English abstract) | |
[14] | 严朋飞, 张莹欣, 贾维嘉, 等. 威氏绿绒蒿二氢黄酮醇4-还原酶DFR基因克隆与表达分析[J]. 分子植物育种, 2021, 19(24): 8064-8070. |
YAN P F, ZHANG Y X, JIA W J, et al. Cloning and expression analysis of dihydroflavonol 4-reductase gene from Meconopsis wilsonii[J]. Molecular Plant Breeding, 2021, 19(24): 8064-8070. (in Chinese with English abstract) | |
[15] | 赵朝. 绿绒蒿属植物的花色变异和物种分化机制[D]. 北京: 中国科学院大学, 2013. |
ZHAO C. Color variation and species differentiation mechanism of Meconopsis[D]. Beijing: University of Chinese Academy of Sciences, 2013. (in Chinese with English abstract) | |
[16] | YOKOYAMA K, YANGZOM R, MIZUNO T, et al. Flavonol glycosides in the flowers of the Himalayan Meconopsis paniculata and Meconopsis integrifolia as yellow pigments[J]. Biochemical Systematics and Ecology, 2018, 81: 102-104. |
[17] | QU Y, OU Z, WANG S. Coloration differences in three Meconopsis species: M. punicea, M. integrifolia and M. wilsonii[J]. South African Journal of Botany, 2022, 150: 171-177. |
[18] | LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. |
[19] | 李辛雷, 王佳童, 孙振元, 等. 金花茶和白色山茶及其3个杂交品种类黄酮成分与花色的关系[J]. 园艺学报, 2019, 46(6): 1145-1154. |
LI X L, WANG J T, SUN Z Y, et al. Flavonoid components and their effects on flower colors in Camellia nitidissima, white C. japonica and their three hybrid cultivars[J]. Acta Horticulturae Sinica, 2019, 46(6): 1145-1154. (in Chinese with English abstract) | |
[20] | 朱佳意, 唐东芹, 李欣. 小苍兰花瓣花黄色素组成和含量分析[J]. 热带作物学报, 2021, 42(4): 1136-1144. |
ZHU J Y, TANG D Q, LI X. Analysis of composition and content of anthoxanthins in petals of Freesia hybrida[J]. Chinese Journal of Tropical Crops, 2021, 42(4): 1136-1144. (in Chinese with English abstract) | |
[21] | DAVIES K M, ALBERT N W, SCHWINN K E. From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning[J]. Functional Plant Biology, 2012, 39(8): 619-638. |
[22] | LUO P, NING G G, WANG Z, et al. Disequilibrium of flavonol synthase and dihydroflavonol-4-reductase expression associated tightly to white vs. red color flower formation in plants[J]. Frontiers in Plant Science, 2016, 6: 1257. |
[23] | ZHANG Y Y, ZHOU T H, DAI Z W, et al. Comparative transcriptomics provides insight into floral color polymorphism in a Pleione limprichtii orchid population[J]. International Journal of Molecular Sciences, 2019, 21(1): 247. |
[24] | PÉREZ-DÍAZ J R, PÉREZ-DÍAZ J, MADRID-ESPINOZA J, et al. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco[J]. Plant Molecular Biology, 2016, 90(1): 63-76. |
[25] | WANG X C, WU J, GUAN M L, et al. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis[J]. The Plant Journal, 2020, 101(3): 637-652. |
[26] | GONZALEZ A, ZHAO M Z, LEAVITT J M, et al. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings[J]. The Plant Journal, 2008, 53(5): 814-827. |
[27] | DAVIES K M, SCHWINN K E, DEROLES S C, et al. Enhancing anthocyanin production by altering competition for substrate between flavonol synthase and dihydroflavonol 4-reductase[J]. Euphytica, 2003, 131(3): 259-268. |
[28] | LIU J Y, OSBOURN A, MA P D. MYB transcription factors as regulators of phenylpropanoid metabolism in plants[J]. Molecular Plant, 2015, 8(5): 689-708. |
[29] | LUO X N, SUN D Y, WANG S, et al. Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers[J]. Horticulture Research, 2021, 8: 235. |
[1] | LIU Xiaolin, SUN Tingting, YANG Jie, HE Hengbin. Cloning and expression analysis of FLS gene of flavonol synthetase in Lilium auratum and L.speciosum var. gloriosoides [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 344-357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||