Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (4): 931-941.DOI: 10.3969/j.issn.1004-1524.2023.04.20
• Food Science • Previous Articles Next Articles
ZHANG Zhen1(), CUI Yuanyuan1, CHEN Chunxia1, FENG Lidan1, ZHAO Yong2, LI Jixin1, BA Lingzhen1, KONG Xiangjin1, ZHANG Yu1, JIANG Yumei1,*(
)
Received:
2022-02-21
Online:
2023-04-25
Published:
2023-05-05
CLC Number:
ZHANG Zhen, CUI Yuanyuan, CHEN Chunxia, FENG Lidan, ZHAO Yong, LI Jixin, BA Lingzhen, KONG Xiangjin, ZHANG Yu, JIANG Yumei. Analysis for accumulation of norisoprenoids and changes of metabolic enzyme activities of Chardonnay grape berries[J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 931-941.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.04.20
香气物质名称 Aroma substance name | 标准曲线方程 Standard curve equation | R2 |
---|---|---|
6-甲基-5-庚烯-2-酮 6-Methylhept-5-en-2-one | Y=9×10-7X-0.531 3 | 0.990 3 |
α-紫罗兰酮 α-Ionone | Y=4×10-7X-0.116 9 | 0.991 7 |
β-紫罗兰酮 β-Ionone | Y=1×10-6X-0.796 2 | 0.988 5 |
β-环柠檬醛 β-Cyclocitral | Y=5×10-7X-0.230 3 | 0.996 1 |
β-大马士酮 β-Damascenone | Y=4×10-7X-0.118 1 | 0.993 8 |
香叶基丙酮 Geranylacetone | Y=2×10-6X-0.077 4 | 0.995 9 |
Table 1 Standard curve equation of norisoprenoids
香气物质名称 Aroma substance name | 标准曲线方程 Standard curve equation | R2 |
---|---|---|
6-甲基-5-庚烯-2-酮 6-Methylhept-5-en-2-one | Y=9×10-7X-0.531 3 | 0.990 3 |
α-紫罗兰酮 α-Ionone | Y=4×10-7X-0.116 9 | 0.991 7 |
β-紫罗兰酮 β-Ionone | Y=1×10-6X-0.796 2 | 0.988 5 |
β-环柠檬醛 β-Cyclocitral | Y=5×10-7X-0.230 3 | 0.996 1 |
β-大马士酮 β-Damascenone | Y=4×10-7X-0.118 1 | 0.993 8 |
香叶基丙酮 Geranylacetone | Y=2×10-6X-0.077 4 | 0.995 9 |
Fig.1 Changes of physical and chemical indexes during development of Chardonnay grape berries A, Titratable acid content; B, pH; C, Soluble solids content; D, 100-grain weight. Different lowercase letters indicate significant differences between different periods in 2020 (P<0.05); different capital letters indicate significant differences between different periods in 2021 (P<0.05). The same as below.
Fig.4 Changes of norisoprenoids during development of Chardonnay grape berries A, The content of norisoprenoids in 2020; B, The content of norisoprenoids in 2021.
Fig.5 Analysis of OPLS-DA and main components of norisoprenoids during development of Chardonnay grape berries A and B, OPLS-DA analysis of free norisoprenoid components; C and D, OPLS-DA analysis of bound norisoprenoid components; E, The changes of free β-ionone content during fruit development; F, The changes of bound β-damascone content during fruit development.
Fig.6 Analysis of correlation between CCD activity, total carotenoid content and norisoprenoids content *, Significant correlation (P<0.05); **, Very significant correlation (P<0.01); F, Free state; B, Bound state.
[1] |
ALEM H, RIGOU P, SCHNEIDER R, et al. Impact of agronomic practices on grape aroma composition: a review[J]. Journal of the Science of Food and Agriculture, 2019, 99(3): 975-985.
DOI PMID |
[2] |
VILANOVA M, GENISHEVA Z, BESCANSA L, et al. Changes in free and bound fractions of aroma compounds of four Vitis vinifera cultivars at the last ripening stages[J]. Phytochemistry, 2012, 74: 196-205.
DOI URL |
[3] | 刘斌. 产地、整形方式和果穗光照条件对葡萄和葡萄酒降异戊二烯产生的影响[D]. 北京: 中国农业大学, 2015. |
LIU B. Effects of region, training system and bunch light condition on norisoprenoids production in grapes and wines[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract) | |
[4] |
RAZUNGLES A J, BABIC I, SAPIS J C, et al. Particular behavior of epoxy xanthophylls during veraison and maturation of grape[J]. Journal of Agricultural and Food Chemistry, 1996, 44(12): 3821-3825.
DOI URL |
[5] |
ROBINSON A L, BOSS P K, SOLOMON P S, et al. Origins of grape and wine aroma. part 1. chemical components and viticultural impacts[J]. American Journal of Enology and Viticulture, 2014, 65(1): 1-24.
DOI URL |
[6] |
BALDERMANN S, KATO M, KUROSAWA M, et al. Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour[J]. Journal of Experimental Botany, 2010, 61(11): 2967-2977.
DOI URL |
[7] | 高媛. 葡萄果实降异戊二烯积累规律及调控机制研究[D]. 北京: 中国农业大学, 2016. |
GAO Y. Accumulation and transcriptional regulation of norisoprenoids in wine grapes[D]. Beijing: China Agricultural University, 2016. (in Chinese with English abstract) | |
[8] |
孟楠, 刘斌, 潘秋红. 葡萄果实降异戊二烯类物质合成调控研究进展[J]. 园艺学报, 2015, 42(9): 1673-1682.
DOI |
MENG N, LIU B, PAN Q H. Research advance on biosynthesis and regulation of norisoprenoids in grape berry[J]. Acta Horticulturae Sinica, 2015, 42(9): 1673-1682. (in Chinese with English abstract)
DOI |
|
[9] |
WU Y S, ZHANG W W, SONG S R, et al. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca×V. vinifera)[J]. Food Chemistry, 2020, 309: 125778.
DOI URL |
[10] | FANG Y, QIAN M C. Accumulation of C13-norisoprenoids and other aroma volatiles in glycoconjugate form during the development of pinot noir grapes[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2012: 101-115. |
[11] |
YOUNG P R, LASHBROOKE J G, ALEXANDERSSON E, et al. The genes and enzymes of the carotenoid metabolic pathway in Vitis vinifera L[J]. BMC Genomics, 2012, 13: 243.
DOI |
[12] |
LASHBROOKE J G, YOUNG P R, DOCKRALL S J, et al. Functional characterisation of three members of the Vitis vinifera L. carotenoid cleavage dioxygenase gene family[J]. BMC Plant Biology, 2013, 13: 156.
DOI |
[13] |
LENG X, WANG P P, WANG C, et al. Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development[J]. Scientific Reports, 2017, 7(1): 4216.
DOI PMID |
[14] | 王雅琛, 韦漪, 潘秋红. C13-降异戊二烯衍生物在葡萄和葡萄酒中积累与调控的研究进展[J]. 果树学报, 2021, 38(2): 264-277. |
WANG Y C, WEI Y, PAN Q H. Advance in research on the accumulation and regulation of C13-norisoprenoid derivatives in grape berry and wine[J]. Journal of Fruit Science, 2021, 38(2): 264-277. (in Chinese with English abstract) | |
[15] | 王福荣. 酿酒分析与检测[M]. 2版. 北京: 化学工业出版社, 2012. |
[16] |
王雨, 李霁昕, 李经纬, 等. 采后苯并噻重氮处理对‘玉金香’甜瓜单萜类香气及其代谢关键酶的影响分析[J]. 食品科学, 2019, 40(5): 214-221.
DOI |
WANG Y, LI J X, LI J W, et al. Effect of postharvest BTH treatment on aroma monoterpenes and key metabolic enzymes in ‘Yujinxiang’ melon[J]. Food Science, 2019, 40(5): 214-221. (in Chinese with English abstract)
DOI |
|
[17] |
CHEN K, WEN J F, MA L Y, et al. Dynamic changes in norisoprenoids and phenylalanine-derived volatiles in off-vine Vidal Blanc grape during late harvest[J]. Food Chemistry, 2019, 289: 645-656.
DOI PMID |
[18] | 李秀杰, 韩真, 李晨, 等. 根域限制对‘巨峰’葡萄果实可溶性糖含量及韧皮部超微结构的影响[J]. 植物生理学报, 2016, 52(10): 1546-1554. |
LI X J, HAN Z, LI C, et al. Effects of root restriction on soluble sugar contents and ultrastructure of phloem tissues in ‘Kyoho’ grape berry[J]. Plant Physiology Journal, 2016, 52(10): 1546-1554. (in Chinese with English abstract) | |
[19] | 张晓霞. 葡萄设施延后栽培不同生育期控水调质机理研究[D]. 兰州: 甘肃农业大学, 2015. |
ZHANG X X. The regulation mechanism of water quality on protected cultivation of delayed grape in different growth period[D]. Lanzhou: Gansu Agricultural University, 2015. (in Chinese with English abstract) | |
[20] | 潘照明. 葡萄浆果的酸代谢生理[J]. 葡萄栽培与酿酒, 1991(1): 1-3. |
PAN Z M. Acid metabolism physiology of grape berries[J]. Sino-Overseas Grapevine & Wine, 1991(1): 1-3. (in Chinese) | |
[21] | 田亮. 不同葡萄品种类胡萝卜素合成差异的研究[D]. 南京: 南京农业大学, 2018. |
TIAN L. Study on the difference of carotenoid synthesis in different grape varieties[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract) | |
[22] |
ÁGUILA RUIZ-SOLA M, RODRÍGUEZ-CONCEPCIÓN M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway[J]. The Arabidopsis Book, 2012, 10: e0158.
DOI URL |
[23] |
LI F W, MELKONIAN M, ROTHFELS C J, et al. Phytochrome diversity in green plants and the origin of canonical plant phytochromes[J]. Nature Communications, 2015, 6: 7852.
DOI |
[24] | WISE R, KENNETH HOOBER J. The structure and function of plastids[J]. Yale Journal of Biology & Medicine, 2006, 29(4): 434. |
[25] |
WANG J M, WU B, ZHANG N, et al. Dehydration-induced carotenoid cleavage dioxygenase 1 reveals a novel route for β-ionone formation during tea (Camellia sinensis) withering[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 10815-10821.
DOI URL |
[26] |
DELUC L G, QUILICI D R, DECENDIT A, et al. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay[J]. BMC Genomics, 2009, 10: 212.
DOI PMID |
[27] |
MENG N, WEI Y, GAO Y, et al. Characterization of transcriptional expression and regulation of carotenoid cleavage dioxygenase 4b in grapes[J]. Frontiers in Plant Science, 2020, 11: 483.
DOI PMID |
[28] |
BUREAU S M, RAZUNGLES A J, BAUMES R L. The aroma of Muscat of Frontignan grapes: effect of the light environment of vine or bunch on volatiles and glycoconjugates[J]. Journal of the Science of Food and Agriculture, 2000, 80(14): 2012-2020.
DOI URL |
[29] |
BINDON K A, DRY P R, LOVEYS B R. Influence of plant water status on the production of C13-norisoprenoid precursors in Vitis vinifera L. cv. cabernet sauvignon grape berries[J]. Journal of Agricultural and Food Chemistry, 2007, 55(11): 4493-4500.
DOI URL |
[30] |
ASPROUDI A, PETROZZIELLO M, CAVALLETTO S, et al. Grape aroma precursors in cv. Nebbiolo as affected by vine microclimate[J]. Food Chemistry, 2016, 211: 947-956.
DOI PMID |
[31] |
XIE S, LEI Y J, WANG Y J, et al. Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions[J]. Plant Growth Regulation, 2019, 87(1): 83-92.
DOI |
[32] | MARAIS J, HUNTER J J, HAASBROEK P D. Effect of canopy microclimate, season and region on sauvignon Blanc grape composition and wine quality[J]. South African Journal of Enology & Viticulture, 1999, 20(1):19-30. |
[33] |
MENG N, YAN G L, ZHANG D, et al. Characterization of two Vitis vinifera carotenoid cleavage dioxygenases by heterologous expression in Saccharomyces cerevisiae[J]. Molecular Biology Reports, 2019, 46(6): 6311-6323.
DOI |
[1] | ZHENG Qing\|song1, LI Hai\|dan2, FENG Kun1, Han Ying3, PANG Xin3, LIU Yun\|fei4. Identification and expression analysis of carotenoid biosynthesis genes in tomato#br# [J]. , 2015, 27(8): 1367-. |
[2] | ZENG Dong-hui;ZHANG Jun;*;LU Sheng-min. Design of citrus peel layered machine and the utilization of peel as a whole [J]. , 2013, 25(4): 0-878. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||