Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1823-1833.DOI: 10.3969/j.issn.1004-1524.20230491
• Plant Protection • Previous Articles Next Articles
ZHANG Siyu1(), LIN Chaoyang1,2, YE Yuxuan1,2, SHEN Zhicheng1,*(
)
Received:
2023-04-18
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230491
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
cry1Ab-vip3Af2-F | ACCTTCTTCTTGTTCAGGTCGATCTC |
cry1Ab-vip3Af2-R | CATCAACACCATGCTGCACATCTACC |
cp4-epsps-F | TTCATGAGGACGTTCAGGATGGTCAC |
cp4-epsps-R | AGATGGGCGTACAGGTCAAATCCGA |
Table 1 Primers of PCR
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
cry1Ab-vip3Af2-F | ACCTTCTTCTTGTTCAGGTCGATCTC |
cry1Ab-vip3Af2-R | CATCAACACCATGCTGCACATCTACC |
cp4-epsps-F | TTCATGAGGACGTTCAGGATGGTCAC |
cp4-epsps-R | AGATGGGCGTACAGGTCAAATCCGA |
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
RB-1 | GGCACTGGCCGTCGTTTTACAACGTCGT |
RB-2 | ACGATGGACTCCAGTCCGGCCGCGTTACCCAACTTAA- TCGCCTTGCAGC |
RB-3 | GCACCGATCGCCCTTCCCAACAGTTGC |
LB-1 | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
LB-2 | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCAT- ATAAGAAACCCTTAG |
LB-3 | CTAAAACCAAAATCCAGTACTAAAATCC |
AC1 | ACGATGGACTCCAGAG |
Table 2 Primers of Hi-Tail PCR
引物 Primer | 引物序列 Primer sequences(5'→3') |
---|---|
LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
RB-1 | GGCACTGGCCGTCGTTTTACAACGTCGT |
RB-2 | ACGATGGACTCCAGTCCGGCCGCGTTACCCAACTTAA- TCGCCTTGCAGC |
RB-3 | GCACCGATCGCCCTTCCCAACAGTTGC |
LB-1 | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
LB-2 | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCAT- ATAAGAAACCCTTAG |
LB-3 | CTAAAACCAAAATCCAGTACTAAAATCC |
AC1 | ACGATGGACTCCAGAG |
靶标昆虫 Target pests | 被试组织 Subject tissue | 幼虫数量 Quantity of larvae | 水稻生长期 Rice growth stage | 观察时间 Observation time/h |
---|---|---|---|---|
大螟 Sesamia inferens | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
二化螟 Chilo suppressalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
稻纵卷叶螟 Cnaphalocrocis medinalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves |
Table 3 The laboratory bioassay of target pests
靶标昆虫 Target pests | 被试组织 Subject tissue | 幼虫数量 Quantity of larvae | 水稻生长期 Rice growth stage | 观察时间 Observation time/h |
---|---|---|---|---|
大螟 Sesamia inferens | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
二化螟 Chilo suppressalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves | ||||
稻纵卷叶螟 Cnaphalocrocis medinalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
秀水134叶片 Xiushui 134 leaves |
除草剂剂量 Herbicide concentration/ (mL·hm-2) | 被试组织 Subject tissue | 观察时间 Observation time/d |
---|---|---|
0 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
20 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
40 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
80 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 |
Table 4 Glyphosate tolerance determination
除草剂剂量 Herbicide concentration/ (mL·hm-2) | 被试组织 Subject tissue | 观察时间 Observation time/d |
---|---|---|
0 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
20 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
40 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
80 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 |
Fig.2 The expression level of exogenous proteins in T0 transformants of rice A, The expression level of Cry1Ab-Vip3Af2, the dotted line showed the Cry1Ab-Vip3Af2 expression level was 5 μg·g-1, which was used as the screening standard; B, The expression level of CP4-EPSPS, the dotted line showed the CP4-EPSPS expression level was 150 μg·g-1, which was used as the screening standard.
Fig.3 PCR analysis of T1, T2 generations of VB3 A, PCR analysis of cry1Ab-vip3Af2; B, PCR analysis of cp4-epsps; M, DNA molecular marker;-, Non-transgenic rice control;+, Positive plasmids; 1-3, Samples of T1 and T2 generations of VB3.
Fig.4 Identification and analyzation of VB3 border sequences A, The electrophoresis result of Hi-Tail PCR about VB3 border sequences. R1, Round 1 products; R2, Round 2 products; R3, Round 3 products; M, DNA molecular marker. B, The identification of VB3 border sequences. M, DNA molecular marker.
Fig.5 Southern bloting of transgenic rice VB3 A, Hybridization with cry1Ab full-length gene as probe; B, Hybridization with cp4-epsps full-length gene as probe;+, Positive plasmids; NT, Non-transgenic rice control digested with the same enzyme; M, DNA molecular maker.
Fig.6 The expression level of exogenous proteins in different tissues of VB3 A, The expression level of Cry1Ab-Vip3Af2 in different tissues of VB3; B, The expression level of CP4-EPSPS in different tissues of VB3.
Fig.7 Western blotting about Cry1Ab-Vip3Af2 and CP4-EPSPS in T1 and T2 generations of VB3 A, Western blotting of Cry1Ab-Vip3Af2; B, Western blotting of CP4-EPSPS; M, Protein pageruler;+, Protein expressed by E.coli;-, Non-transgenic rice control; L, Leaves; St, Stem; Sd, Seed.
时期 Stage | 水稻株系 Rice line | 大螟Sesamia inferens | 二化螟Chilo suppressalis | 稻纵卷叶螟Cnaphalocrocis medinalis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
死亡率Mortality/% | 死亡率Mortality/% | 死亡率Mortality/% | ||||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
分蘖期 Tillering stage | VB3 VB3 | 29.37± 3.00** | 91.30± 2.50** | 100** | 31.40± 2.44** | 85.07± 2.04** | 100** | 32.57± 2.68** | 92.10± 1.97** | 100** |
秀水134 Xiushui 134 | 3.06± 0.57 | 5.80± 1.45 | 7.33± 0.81 | 2.80± 0.46 | 3.77± 0.45 | 7.60± 0.56 | 3.30± 0.44 | 5.57± 0.76 | 8.50± 0.53 | |
抽穗期 Heading stage | VB3 VB3 | 23.63± 2.65** | 88.73± 1.23** | 100** | 22.53± 1.78** | 86.73± 2.87** | 100** | 23.43± 1.25** | 87.03± 1.69** | 100** |
秀水134 Xiushui 134 | 3.47± 0.40 | 4.67± 0.40 | 8.30± 0.9 | 2.57± 0.23 | 3.97± 0.42 | 6.87± 0.25 | 3.03± 0.23 | 5.67± 0.57 | 7.83± 0.81 | |
灌浆期 Filling stage | VB3 VB3 | 30.37± 2.57** | 82.97± 2.32** | 100** | 32.60± 2.04** | 93.77± 1.17** | 100** | 26.53± 0.96** | 89.00± 2.26** | 100** |
秀水134 Xiushui 134 | 2.77± 0.42 | 4.57± 0.61 | 7.37± 0.55 | 4.00± 0.46 | 5.17± 0.45 | 7.50± 0.17 | 2.80± 0.36 | 4.67± 0.32 | 8.17± 0.25 |
Table 5 Mortality of Sesamia inferens, Chilo suppressalis, Cnaphalocrocis medinalis fed on VB3 and non-transgenic rice leaves
时期 Stage | 水稻株系 Rice line | 大螟Sesamia inferens | 二化螟Chilo suppressalis | 稻纵卷叶螟Cnaphalocrocis medinalis | ||||||
---|---|---|---|---|---|---|---|---|---|---|
死亡率Mortality/% | 死亡率Mortality/% | 死亡率Mortality/% | ||||||||
24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
分蘖期 Tillering stage | VB3 VB3 | 29.37± 3.00** | 91.30± 2.50** | 100** | 31.40± 2.44** | 85.07± 2.04** | 100** | 32.57± 2.68** | 92.10± 1.97** | 100** |
秀水134 Xiushui 134 | 3.06± 0.57 | 5.80± 1.45 | 7.33± 0.81 | 2.80± 0.46 | 3.77± 0.45 | 7.60± 0.56 | 3.30± 0.44 | 5.57± 0.76 | 8.50± 0.53 | |
抽穗期 Heading stage | VB3 VB3 | 23.63± 2.65** | 88.73± 1.23** | 100** | 22.53± 1.78** | 86.73± 2.87** | 100** | 23.43± 1.25** | 87.03± 1.69** | 100** |
秀水134 Xiushui 134 | 3.47± 0.40 | 4.67± 0.40 | 8.30± 0.9 | 2.57± 0.23 | 3.97± 0.42 | 6.87± 0.25 | 3.03± 0.23 | 5.67± 0.57 | 7.83± 0.81 | |
灌浆期 Filling stage | VB3 VB3 | 30.37± 2.57** | 82.97± 2.32** | 100** | 32.60± 2.04** | 93.77± 1.17** | 100** | 26.53± 0.96** | 89.00± 2.26** | 100** |
秀水134 Xiushui 134 | 2.77± 0.42 | 4.57± 0.61 | 7.37± 0.55 | 4.00± 0.46 | 5.17± 0.45 | 7.50± 0.17 | 2.80± 0.36 | 4.67± 0.32 | 8.17± 0.25 |
[1] | QIAO F B, HU R F, HUANG J K. Genetically modified (GM) rice versus non-GM rice: pesticide use and yield[J]. Science China Life Sciences, 2020, 63(5): 785-787. |
[2] | KUMAR A, PRASAD S, MISHRA V K, et al. Effect of submergence stress on physiological indices and yield of rice (Oryza sativa L.) genotypes[J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(1): 994-999. |
[3] | KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Molecular Biology, 1997, 35(1/2): 25-34. |
[4] | RIEGLER M. Insect threats to food security[J]. Science, 2018, 361(6405): 846. |
[5] | JOSHI M, BIRARI V, VARADHARASU P, et al. Role of biotechnology in insect-pests management[J]. Agriculture & Food: e-Newsletter, 2020, 2(4): 574-576. |
[6] | MATEOS FERNÁNDEZ R, PETEK M, GERASYMENKO I, et al. Insect pest management in the age of synthetic biology[J]. Plant Biotechnology Journal, 2022, 20(1): 25-36. |
[7] | RIZWAN M, ATTA B, SABIR A M, et al. Evaluation of the entomopathogenic fungi as a non-traditional control of the rice leaf roller, Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) under controlled conditions[J]. Egyptian Journal of Biological Pest Control, 2019, 29(1): 1-4. |
[8] | BILAL M, HUSSAIN M, UMER M, et al. Population incidence and efficacy of chemical control against rice leaffolder (Cnaphnalocrocis medinalis Guenee) (pyralidae: Lepidoptera)[J]. Asian Plant Research Journal, 2019: 1-7. |
[9] | AKBAR N, EHSANULLAH, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
[10] | SALIM M, MASIH R. Efficacy of insecticides against rice borers at NARC, Islamabad[J]. Pakistan Journal of Agricultural Research, 1988, 8(4): 477-479. |
[11] | STEVENS J, DUNSE K, FOX J, et al. Biotechnological approaches for the control of insect pests in crop plants[M]// SOUDARARAJAN R P, Pesticides-Advances in Chemical and Botanical Pesticides. Rijeka: IntechOpen, 2012. |
[12] | MAKKAR G S, BENTUR J. Breeding for stem borer and gall midge resistance in rice[M]//RAMESH A, SURINDER S, Breeding Insect Resistant Crops for Sustainable Agriculture. Singapore: Springer Singapore, 2017: 323-352. |
[13] | HORGAN F G. Integrated pest management for sustainable rice cultivation: a holistic approach[M]//TAKUII S, Achieving sustainable cultivation of rice Volume 2. Cambridge, UK: Burleigh Dodds Science Publishing, 2017: 309-342. |
[14] | DU B, CHEN R Z, GUO J P, et al. Current understanding of the genomic, genetic, and molecular control of insect resistance in rice[J]. Molecular Breeding, 2020, 40(2): 1-25. |
[15] | TILGAM J, KUMAR K, JAYASWAL D, et al. Success of microbial genes based transgenic crops: Bt and beyond Bt[J]. Molecular Biology Reports, 2021, 48(12): 8111-8122. |
[16] | CHEN M, SHELTON A, YE G Y. Insect-resistant genetically modified rice in China: from research to commercialization[J]. Annual Review of Entomology, 2011, 56: 81-101. |
[17] | TU J, ZHANG G, DATTA K, et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin[J]. Nature Biotechnology, 2000, 18(10): 1101-1104. |
[18] | TABASHNIK B E, BRÉVAULT T, CARRIÈRE Y. Insect resistance to Bt crops: lessons from the first billion acres[J]. Nature Biotechnology, 2013, 31(6): 510-521. |
[19] | KIM J H, LEE S Y, KIM W J, et al. Resistance of transgenic rice events (rbcS: cry1Ac) against three lepidopteran rice pests[J]. Journal of Asia-Pacific Entomology, 2018, 21(2): 645-650. |
[20] | TABASHNIK B E, FABRICK J A, CARRIÈRE Y. Global patterns of insect resistance to transgenic bt crops: the first 25 years[J]. Journal of Economic Entomology, 2023, 116(2): 297-309. |
[21] | TABASHNIK B E, CARRIÈRE Y. Global patterns of resistance to bt crops highlighting pink bollworm in the United States, China, and India[J]. Journal of Economic Entomology, 2019, 112(6): 2513-2523. |
[22] | CARRIÈRE Y, FABRICK J A, TABASHNIK B E. Can Pyramids and seed mixtures delay resistance to bt crops?[J]. Trends in Biotechnology, 2016, 34(4): 291-302. |
[23] | 李香菊. 我国转基因耐除草剂作物研发与应用[J]. 现代农药, 2023, 22(1): 5-10. |
LI X J. The development and application of genetically modified herbicide-tolerant crops in China[J]. Modern Agrochemicals, 2023, 22(1): 5-10. (in Chinese with English abstract) | |
[24] | 沈志成. 抗虫融合基因、融合蛋白及其应用: CN100427600C[P]. 2008-10-22. |
[25] | 沈志成, 李京. 通过基因融合降低Vip3蛋白对转基因植物毒性的方法: CN103045628A[P]. 2014-09-17. |
[26] | HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35(1/2): 205-218. |
[27] | HEALEY A, FURTADO A, COOPER T, et al. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species[J]. Plant Methods, 2014, 10: 21. |
[28] | LIU Y G, CHEN Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649-650, 652, 654. |
[29] | 项雅琴. 一种Bt转基因玉米的分子特征研究及功能性状分析[D]. 杭州: 浙江大学, 2021. |
XIANG Y Q. Molecular characteristics and functional traits analysis of bt transgenic corn[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) | |
[30] | HORGAN F G, ROMENA A M, BERNAL C C, et al. Stem borers revisited: host resistance, tolerance, and vulnerability determine levels of field damage from a complex of Asian rice stemborers[J]. Crop Protection, 2021, 142: 105513. |
[31] | XU C, CHENG J H, LIN H Y, et al. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J]. Scientific Reports, 2018, 8(1): 15788. |
[32] | GAO Y L, HU Y, FU Q, et al. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis[J]. Journal of Invertebrate Pathology, 2010, 105(1): 11-15. |
[33] | 许超, 沈志成. 一种管理玉米螟对Bt毒素抗性的方法: CN113793639A[P]. 2021-12-14. |
[34] | BEN HAMADOU-CHARFI D, BOUKEDI H, ABDELKEFI-MESRATI L, et al. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin[J]. Journal of Invertebrate Pathology, 2013, 114(2): 139-143. |
[35] | WELCH K L, UNNITHAN G C, DEGAIN B A, et al. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea[J]. Journal of Invertebrate Pathology, 2015, 132: 149-156. |
[36] | TABASHNIK B E, CARRIÈRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017, 35(10): 926-935. |
[37] | TABASHNIK B E, UNNITHAN G C, YELICH A J, et al. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins[J]. Pest Management Science, 2022, 78(10): 3973-3979. |
[38] | GREEN J M. The benefits of herbicide-resistant crops[J]. Pest Management Science, 2012, 68(10): 1323-1331. |
[1] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[2] | XU Li, WANG Qi, DING Ting, JIANG Teng. Cloning of GRMZM2G455909 gene from maize and its functional analysis in transgenic plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1976-984. |
[3] | JIANG Yuanyuan, JI Yi, LAI Yongmin, CHEN Xiaoyun, XU Junfeng, XU Xiaoli, MA Lianju. Safety evaluation of Cry-transgenic insect-resistant maize on silkworm, Bombyx mori [J]. , 2020, 32(11): 2042-2049. |
[4] | TANG Ting, XIE Shilong, ZHU Xuan, XU Junfeng, TANG Jun, WANG Xiaofu. CaMV35S promoter and its application and detection in transgenic crops [J]. , 2019, 31(1): 161-170. |
[5] | LIU Yan, JI Dongfeng, SHEN Guoxin, WEI Jia, LIN Tianbao, ZHU Yan, LYU Zhiqiang. Cloning and functional characterization of a Na+/H+ antiporter gene from mulberry [J]. , 2017, 29(6): 874-881. |
[6] | LU Chunbin, ZHANG Yan, CHEN Bohui, LIN Zebin, QIU Pingle, LIU Biao. Effects of glyphosate-resistant transgenic soybean on in vitro fertilization of male mice with reproductive damage [J]. , 2017, 29(6): 910-916. |
[7] | YU Xiaobo, SHA Yuebing, ZHANG Jiangdong, ZHAO Lei, CHEN Yi, SUI Zhiwei. Development of a reference plasmid of genetically modified rapeseed Ms8 [J]. , 2017, 29(5): 694-700. |
[8] | LU Chunbin1, LIN Zebin1, ZHANG Yan1, CHEN Bohui1, WU Jiale1, LIU Biao2, *. Effects of glyphosateresistant transgenic soybean on physical enginery of male mice [J]. , 2016, 28(7): 1115-. |
[9] | LIU Dan, WU Feng-zhi. Effect of phenylalanine ammonialyase transgenic Arabidopsis thaliana on bacterial community in rhizosphere soil [J]. , 2016, 28(12): 2068-2075. |
[10] | LIU Kai;YANG Yajun;*;TIAN Junce;XU Hongxing;ZHENG Xusong;LYU Zhongxian;*. Multigeneration effect of Bt rice with cry1C and cry2A on survival, development and reproduction of nontarget pest Sogatella furcifera (Horvth) [J]. , 2014, 26(3): 0-730735. |
[11] | HAN Hai\|liang;YANG Ya\|jun;BAO Fei;WANG Gui\|yue;*;TAN He\|ping;LYU Zhong\|xian. Target resistance and non\|target effect of two transgenic Bt rice lines in Zhejiang field [J]. , 2013, 25(6): 0-1308. |
[12] | HUANG Sai-nan;WANG Xiao-fu;XYU Jun-feng;CHEN Xiao-yun;MIAO Qing-mei;LI Yue-ying;*. Effect of artificial heat processing on transgenic rice detection [J]. , 2013, 25(2): 0-218. |
[13] | JIANG Nan;WANG Xiao-fu;XYU Jun-feng;HUANG Zhi-hong;ZHOU Yu;*. Quantity effects analysis of Bt genes on the endophytic prokaryotes in transgenic rice [J]. , 2012, 24(5): 0-874. |
[14] | LIU Zhong-lai;LI Jun;QU Shao-hong;*. Genetic analysis of segregation distortion in indicajaponica hybrids of rice using RFP markers [J]. , 2012, 24(2): 0-192. |
[15] | HE Hai-yan;ZHOU Jie;LI Ya-li;ZHAO Jian-hua;LIU Zhong-lai. Achievements on eliminating the selection marker of transgenic plant [J]. , 2012, 24(2): 0-359. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||