Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1823-1833.DOI: 10.3969/j.issn.1004-1524.20230491
• Plant Protection • Previous Articles Next Articles
ZHANG Siyu1(
), LIN Chaoyang1,2, YE Yuxuan1,2, SHEN Zhicheng1,*(
)
Received:2023-04-18
Online:2023-08-25
Published:2023-08-29
CLC Number:
ZHANG Siyu, LIN Chaoyang, YE Yuxuan, SHEN Zhicheng. Characterization of transgenic insect resistance and glyphosate tolerance rice expressing cry1Ab-vip3Af2 and cp4-epsps[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1823-1833.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230491
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| cry1Ab-vip3Af2-F | ACCTTCTTCTTGTTCAGGTCGATCTC |
| cry1Ab-vip3Af2-R | CATCAACACCATGCTGCACATCTACC |
| cp4-epsps-F | TTCATGAGGACGTTCAGGATGGTCAC |
| cp4-epsps-R | AGATGGGCGTACAGGTCAAATCCGA |
Table 1 Primers of PCR
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| cry1Ab-vip3Af2-F | ACCTTCTTCTTGTTCAGGTCGATCTC |
| cry1Ab-vip3Af2-R | CATCAACACCATGCTGCACATCTACC |
| cp4-epsps-F | TTCATGAGGACGTTCAGGATGGTCAC |
| cp4-epsps-R | AGATGGGCGTACAGGTCAAATCCGA |
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
| LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
| LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
| LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
| RB-1 | GGCACTGGCCGTCGTTTTACAACGTCGT |
| RB-2 | ACGATGGACTCCAGTCCGGCCGCGTTACCCAACTTAA- TCGCCTTGCAGC |
| RB-3 | GCACCGATCGCCCTTCCCAACAGTTGC |
| LB-1 | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
| LB-2 | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCAT- ATAAGAAACCCTTAG |
| LB-3 | CTAAAACCAAAATCCAGTACTAAAATCC |
| AC1 | ACGATGGACTCCAGAG |
Table 2 Primers of Hi-Tail PCR
| 引物 Primer | 引物序列 Primer sequences(5'→3') |
|---|---|
| LAD1 | ACGATGGACTCCAGAGCGGCCGCVNVNNNGGAA |
| LAD2 | ACGATGGACTCCAGAGCGGCCGCBNBNNNGGTT |
| LAD3 | ACGATGGACTCCAGAGCGGCCGCVVNVNNNCCAA |
| LAD4 | ACGATGGACTCCAGAGCGGCCGCBDNBNNNCGGT |
| RB-1 | GGCACTGGCCGTCGTTTTACAACGTCGT |
| RB-2 | ACGATGGACTCCAGTCCGGCCGCGTTACCCAACTTAA- TCGCCTTGCAGC |
| RB-3 | GCACCGATCGCCCTTCCCAACAGTTGC |
| LB-1 | TTTCTCCATAATAATGTGTGAGTAGTTCCC |
| LB-2 | ACGATGGACTCCAGTCCGGCCCTCATGTGTTGAGCAT- ATAAGAAACCCTTAG |
| LB-3 | CTAAAACCAAAATCCAGTACTAAAATCC |
| AC1 | ACGATGGACTCCAGAG |
| 靶标昆虫 Target pests | 被试组织 Subject tissue | 幼虫数量 Quantity of larvae | 水稻生长期 Rice growth stage | 观察时间 Observation time/h |
|---|---|---|---|---|
| 大螟 Sesamia inferens | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
| 秀水134叶片 Xiushui 134 leaves | ||||
| 二化螟 Chilo suppressalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
| 秀水134叶片 Xiushui 134 leaves | ||||
| 稻纵卷叶螟 Cnaphalocrocis medinalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
| 秀水134叶片 Xiushui 134 leaves |
Table 3 The laboratory bioassay of target pests
| 靶标昆虫 Target pests | 被试组织 Subject tissue | 幼虫数量 Quantity of larvae | 水稻生长期 Rice growth stage | 观察时间 Observation time/h |
|---|---|---|---|---|
| 大螟 Sesamia inferens | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
| 秀水134叶片 Xiushui 134 leaves | ||||
| 二化螟 Chilo suppressalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
| 秀水134叶片 Xiushui 134 leaves | ||||
| 稻纵卷叶螟 Cnaphalocrocis medinalis | VB3叶片 VB3 leaves | 20 | 分蘖期、抽穗期、灌浆期 Tillering stage, heading stage, filling stage | 24 |
| 秀水134叶片 Xiushui 134 leaves |
| 除草剂剂量 Herbicide concentration/ (mL·hm-2) | 被试组织 Subject tissue | 观察时间 Observation time/d |
|---|---|---|
| 0 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
| 20 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
| 40 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
| 80 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 |
Table 4 Glyphosate tolerance determination
| 除草剂剂量 Herbicide concentration/ (mL·hm-2) | 被试组织 Subject tissue | 观察时间 Observation time/d |
|---|---|---|
| 0 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
| 20 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
| 40 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 | ||
| 80 | VB3幼苗期3~5叶 3-5 leaves at seedling stage of VB3 | 7 |
| 秀水134幼苗期3~5叶 3-5 leaves at seedling stage of Xiushui 134 |
Fig.2 The expression level of exogenous proteins in T0 transformants of rice A, The expression level of Cry1Ab-Vip3Af2, the dotted line showed the Cry1Ab-Vip3Af2 expression level was 5 μg·g-1, which was used as the screening standard; B, The expression level of CP4-EPSPS, the dotted line showed the CP4-EPSPS expression level was 150 μg·g-1, which was used as the screening standard.
Fig.3 PCR analysis of T1, T2 generations of VB3 A, PCR analysis of cry1Ab-vip3Af2; B, PCR analysis of cp4-epsps; M, DNA molecular marker;-, Non-transgenic rice control;+, Positive plasmids; 1-3, Samples of T1 and T2 generations of VB3.
Fig.4 Identification and analyzation of VB3 border sequences A, The electrophoresis result of Hi-Tail PCR about VB3 border sequences. R1, Round 1 products; R2, Round 2 products; R3, Round 3 products; M, DNA molecular marker. B, The identification of VB3 border sequences. M, DNA molecular marker.
Fig.5 Southern bloting of transgenic rice VB3 A, Hybridization with cry1Ab full-length gene as probe; B, Hybridization with cp4-epsps full-length gene as probe;+, Positive plasmids; NT, Non-transgenic rice control digested with the same enzyme; M, DNA molecular maker.
Fig.6 The expression level of exogenous proteins in different tissues of VB3 A, The expression level of Cry1Ab-Vip3Af2 in different tissues of VB3; B, The expression level of CP4-EPSPS in different tissues of VB3.
Fig.7 Western blotting about Cry1Ab-Vip3Af2 and CP4-EPSPS in T1 and T2 generations of VB3 A, Western blotting of Cry1Ab-Vip3Af2; B, Western blotting of CP4-EPSPS; M, Protein pageruler;+, Protein expressed by E.coli;-, Non-transgenic rice control; L, Leaves; St, Stem; Sd, Seed.
| 时期 Stage | 水稻株系 Rice line | 大螟Sesamia inferens | 二化螟Chilo suppressalis | 稻纵卷叶螟Cnaphalocrocis medinalis | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 死亡率Mortality/% | 死亡率Mortality/% | 死亡率Mortality/% | ||||||||
| 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
| 分蘖期 Tillering stage | VB3 VB3 | 29.37± 3.00** | 91.30± 2.50** | 100** | 31.40± 2.44** | 85.07± 2.04** | 100** | 32.57± 2.68** | 92.10± 1.97** | 100** |
| 秀水134 Xiushui 134 | 3.06± 0.57 | 5.80± 1.45 | 7.33± 0.81 | 2.80± 0.46 | 3.77± 0.45 | 7.60± 0.56 | 3.30± 0.44 | 5.57± 0.76 | 8.50± 0.53 | |
| 抽穗期 Heading stage | VB3 VB3 | 23.63± 2.65** | 88.73± 1.23** | 100** | 22.53± 1.78** | 86.73± 2.87** | 100** | 23.43± 1.25** | 87.03± 1.69** | 100** |
| 秀水134 Xiushui 134 | 3.47± 0.40 | 4.67± 0.40 | 8.30± 0.9 | 2.57± 0.23 | 3.97± 0.42 | 6.87± 0.25 | 3.03± 0.23 | 5.67± 0.57 | 7.83± 0.81 | |
| 灌浆期 Filling stage | VB3 VB3 | 30.37± 2.57** | 82.97± 2.32** | 100** | 32.60± 2.04** | 93.77± 1.17** | 100** | 26.53± 0.96** | 89.00± 2.26** | 100** |
| 秀水134 Xiushui 134 | 2.77± 0.42 | 4.57± 0.61 | 7.37± 0.55 | 4.00± 0.46 | 5.17± 0.45 | 7.50± 0.17 | 2.80± 0.36 | 4.67± 0.32 | 8.17± 0.25 | |
Table 5 Mortality of Sesamia inferens, Chilo suppressalis, Cnaphalocrocis medinalis fed on VB3 and non-transgenic rice leaves
| 时期 Stage | 水稻株系 Rice line | 大螟Sesamia inferens | 二化螟Chilo suppressalis | 稻纵卷叶螟Cnaphalocrocis medinalis | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 死亡率Mortality/% | 死亡率Mortality/% | 死亡率Mortality/% | ||||||||
| 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | 24 h | 48 h | 72 h | ||
| 分蘖期 Tillering stage | VB3 VB3 | 29.37± 3.00** | 91.30± 2.50** | 100** | 31.40± 2.44** | 85.07± 2.04** | 100** | 32.57± 2.68** | 92.10± 1.97** | 100** |
| 秀水134 Xiushui 134 | 3.06± 0.57 | 5.80± 1.45 | 7.33± 0.81 | 2.80± 0.46 | 3.77± 0.45 | 7.60± 0.56 | 3.30± 0.44 | 5.57± 0.76 | 8.50± 0.53 | |
| 抽穗期 Heading stage | VB3 VB3 | 23.63± 2.65** | 88.73± 1.23** | 100** | 22.53± 1.78** | 86.73± 2.87** | 100** | 23.43± 1.25** | 87.03± 1.69** | 100** |
| 秀水134 Xiushui 134 | 3.47± 0.40 | 4.67± 0.40 | 8.30± 0.9 | 2.57± 0.23 | 3.97± 0.42 | 6.87± 0.25 | 3.03± 0.23 | 5.67± 0.57 | 7.83± 0.81 | |
| 灌浆期 Filling stage | VB3 VB3 | 30.37± 2.57** | 82.97± 2.32** | 100** | 32.60± 2.04** | 93.77± 1.17** | 100** | 26.53± 0.96** | 89.00± 2.26** | 100** |
| 秀水134 Xiushui 134 | 2.77± 0.42 | 4.57± 0.61 | 7.37± 0.55 | 4.00± 0.46 | 5.17± 0.45 | 7.50± 0.17 | 2.80± 0.36 | 4.67± 0.32 | 8.17± 0.25 | |
| [1] | QIAO F B, HU R F, HUANG J K. Genetically modified (GM) rice versus non-GM rice: pesticide use and yield[J]. Science China Life Sciences, 2020, 63(5): 785-787. |
| [2] | KUMAR A, PRASAD S, MISHRA V K, et al. Effect of submergence stress on physiological indices and yield of rice (Oryza sativa L.) genotypes[J]. International Journal of Current Microbiology and Applied Sciences, 2020, 9(1): 994-999. |
| [3] | KHUSH G S. Origin, dispersal, cultivation and variation of rice[J]. Plant Molecular Biology, 1997, 35(1/2): 25-34. |
| [4] | RIEGLER M. Insect threats to food security[J]. Science, 2018, 361(6405): 846. |
| [5] | JOSHI M, BIRARI V, VARADHARASU P, et al. Role of biotechnology in insect-pests management[J]. Agriculture & Food: e-Newsletter, 2020, 2(4): 574-576. |
| [6] | MATEOS FERNÁNDEZ R, PETEK M, GERASYMENKO I, et al. Insect pest management in the age of synthetic biology[J]. Plant Biotechnology Journal, 2022, 20(1): 25-36. |
| [7] | RIZWAN M, ATTA B, SABIR A M, et al. Evaluation of the entomopathogenic fungi as a non-traditional control of the rice leaf roller, Cnaphalocrocis medinalis (Guenee) (Lepidoptera: Pyralidae) under controlled conditions[J]. Egyptian Journal of Biological Pest Control, 2019, 29(1): 1-4. |
| [8] | BILAL M, HUSSAIN M, UMER M, et al. Population incidence and efficacy of chemical control against rice leaffolder (Cnaphnalocrocis medinalis Guenee) (pyralidae: Lepidoptera)[J]. Asian Plant Research Journal, 2019: 1-7. |
| [9] | AKBAR N, EHSANULLAH, JABRAN K, et al. Weed management improves yield and quality of direct seeded rice[J]. Australian Journal of Crop Science, 2011, 5(6): 688-694. |
| [10] | SALIM M, MASIH R. Efficacy of insecticides against rice borers at NARC, Islamabad[J]. Pakistan Journal of Agricultural Research, 1988, 8(4): 477-479. |
| [11] | STEVENS J, DUNSE K, FOX J, et al. Biotechnological approaches for the control of insect pests in crop plants[M]// SOUDARARAJAN R P, Pesticides-Advances in Chemical and Botanical Pesticides. Rijeka: IntechOpen, 2012. |
| [12] | MAKKAR G S, BENTUR J. Breeding for stem borer and gall midge resistance in rice[M]//RAMESH A, SURINDER S, Breeding Insect Resistant Crops for Sustainable Agriculture. Singapore: Springer Singapore, 2017: 323-352. |
| [13] | HORGAN F G. Integrated pest management for sustainable rice cultivation: a holistic approach[M]//TAKUII S, Achieving sustainable cultivation of rice Volume 2. Cambridge, UK: Burleigh Dodds Science Publishing, 2017: 309-342. |
| [14] | DU B, CHEN R Z, GUO J P, et al. Current understanding of the genomic, genetic, and molecular control of insect resistance in rice[J]. Molecular Breeding, 2020, 40(2): 1-25. |
| [15] | TILGAM J, KUMAR K, JAYASWAL D, et al. Success of microbial genes based transgenic crops: Bt and beyond Bt[J]. Molecular Biology Reports, 2021, 48(12): 8111-8122. |
| [16] | CHEN M, SHELTON A, YE G Y. Insect-resistant genetically modified rice in China: from research to commercialization[J]. Annual Review of Entomology, 2011, 56: 81-101. |
| [17] | TU J, ZHANG G, DATTA K, et al. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis delta-endotoxin[J]. Nature Biotechnology, 2000, 18(10): 1101-1104. |
| [18] | TABASHNIK B E, BRÉVAULT T, CARRIÈRE Y. Insect resistance to Bt crops: lessons from the first billion acres[J]. Nature Biotechnology, 2013, 31(6): 510-521. |
| [19] | KIM J H, LEE S Y, KIM W J, et al. Resistance of transgenic rice events (rbcS: cry1Ac) against three lepidopteran rice pests[J]. Journal of Asia-Pacific Entomology, 2018, 21(2): 645-650. |
| [20] | TABASHNIK B E, FABRICK J A, CARRIÈRE Y. Global patterns of insect resistance to transgenic bt crops: the first 25 years[J]. Journal of Economic Entomology, 2023, 116(2): 297-309. |
| [21] | TABASHNIK B E, CARRIÈRE Y. Global patterns of resistance to bt crops highlighting pink bollworm in the United States, China, and India[J]. Journal of Economic Entomology, 2019, 112(6): 2513-2523. |
| [22] | CARRIÈRE Y, FABRICK J A, TABASHNIK B E. Can Pyramids and seed mixtures delay resistance to bt crops?[J]. Trends in Biotechnology, 2016, 34(4): 291-302. |
| [23] | 李香菊. 我国转基因耐除草剂作物研发与应用[J]. 现代农药, 2023, 22(1): 5-10. |
| LI X J. The development and application of genetically modified herbicide-tolerant crops in China[J]. Modern Agrochemicals, 2023, 22(1): 5-10. (in Chinese with English abstract) | |
| [24] | 沈志成. 抗虫融合基因、融合蛋白及其应用: CN100427600C[P]. 2008-10-22. |
| [25] | 沈志成, 李京. 通过基因融合降低Vip3蛋白对转基因植物毒性的方法: CN103045628A[P]. 2014-09-17. |
| [26] | HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35(1/2): 205-218. |
| [27] | HEALEY A, FURTADO A, COOPER T, et al. Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species[J]. Plant Methods, 2014, 10: 21. |
| [28] | LIU Y G, CHEN Y L. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences[J]. BioTechniques, 2007, 43(5): 649-650, 652, 654. |
| [29] | 项雅琴. 一种Bt转基因玉米的分子特征研究及功能性状分析[D]. 杭州: 浙江大学, 2021. |
| XIANG Y Q. Molecular characteristics and functional traits analysis of bt transgenic corn[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) | |
| [30] | HORGAN F G, ROMENA A M, BERNAL C C, et al. Stem borers revisited: host resistance, tolerance, and vulnerability determine levels of field damage from a complex of Asian rice stemborers[J]. Crop Protection, 2021, 142: 105513. |
| [31] | XU C, CHENG J H, LIN H Y, et al. Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance[J]. Scientific Reports, 2018, 8(1): 15788. |
| [32] | GAO Y L, HU Y, FU Q, et al. Screen of Bacillus thuringiensis toxins for transgenic rice to control Sesamia inferens and Chilo suppressalis[J]. Journal of Invertebrate Pathology, 2010, 105(1): 11-15. |
| [33] | 许超, 沈志成. 一种管理玉米螟对Bt毒素抗性的方法: CN113793639A[P]. 2021-12-14. |
| [34] | BEN HAMADOU-CHARFI D, BOUKEDI H, ABDELKEFI-MESRATI L, et al. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin[J]. Journal of Invertebrate Pathology, 2013, 114(2): 139-143. |
| [35] | WELCH K L, UNNITHAN G C, DEGAIN B A, et al. Cross-resistance to toxins used in pyramided Bt crops and resistance to Bt sprays in Helicoverpa zea[J]. Journal of Invertebrate Pathology, 2015, 132: 149-156. |
| [36] | TABASHNIK B E, CARRIÈRE Y. Surge in insect resistance to transgenic crops and prospects for sustainability[J]. Nature Biotechnology, 2017, 35(10): 926-935. |
| [37] | TABASHNIK B E, UNNITHAN G C, YELICH A J, et al. Responses to Bt toxin Vip3Aa by pink bollworm larvae resistant or susceptible to Cry toxins[J]. Pest Management Science, 2022, 78(10): 3973-3979. |
| [38] | GREEN J M. The benefits of herbicide-resistant crops[J]. Pest Management Science, 2012, 68(10): 1323-1331. |
| [1] | XIAN Ruotong, MIAO Qingmei, PENG Cheng, CHEN Xiaoyun, YANG Lei, XU Xiaoli, WEI Wei, XU Junfeng, LI Yueying, WANG Xiaofu. Establishment and application of event-specific real-time PCR detection method of transgenic maize WYN17132 [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1397-1406. |
| [2] | WU Haofeng, LIN Zhaoyang, SHEN Zhicheng. A transgenic rice resistant to glyphosate and flazasulfuron [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 1957-1968. |
| [3] | YAN Jingying, NI Liang, SHEN Xingyu, LI Yu. Effect of heat treatment on the degradation of recombinant protein and recombinant DNA in transgenic straws [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2079-2088. |
| [4] | YANG Lei, WANG Xiaofu, WEI Wei, CHEN Xiaoyun, PENG Cheng, XU Xiaoli, XU Junfeng. The antifungal responses of insects against an entomopathogenic fungi, Beauveria bassiana and their application potential in pest control [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 825-836. |
| [5] | LU Ziqi, WANG Jing, ZHANG Zhen, WANG Jiaoyu, SUN Guocang, LIN Fucheng. Research progress of biopesticides based on RNAi [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 968-977. |
| [6] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
| [7] | XU Li, WANG Qi, DING Ting, JIANG Teng. Cloning of GRMZM2G455909 gene from maize and its functional analysis in transgenic plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1976-984. |
| [8] | JIANG Yuanyuan, JI Yi, LAI Yongmin, CHEN Xiaoyun, XU Junfeng, XU Xiaoli, MA Lianju. Safety evaluation of Cry-transgenic insect-resistant maize on silkworm, Bombyx mori [J]. , 2020, 32(11): 2042-2049. |
| [9] | TANG Ting, XIE Shilong, ZHU Xuan, XU Junfeng, TANG Jun, WANG Xiaofu. CaMV35S promoter and its application and detection in transgenic crops [J]. , 2019, 31(1): 161-170. |
| [10] | LIU Yan, JI Dongfeng, SHEN Guoxin, WEI Jia, LIN Tianbao, ZHU Yan, LYU Zhiqiang. Cloning and functional characterization of a Na+/H+ antiporter gene from mulberry [J]. , 2017, 29(6): 874-881. |
| [11] | LU Chunbin, ZHANG Yan, CHEN Bohui, LIN Zebin, QIU Pingle, LIU Biao. Effects of glyphosate-resistant transgenic soybean on in vitro fertilization of male mice with reproductive damage [J]. , 2017, 29(6): 910-916. |
| [12] | YU Xiaobo, SHA Yuebing, ZHANG Jiangdong, ZHAO Lei, CHEN Yi, SUI Zhiwei. Development of a reference plasmid of genetically modified rapeseed Ms8 [J]. , 2017, 29(5): 694-700. |
| [13] | LU Chunbin1, LIN Zebin1, ZHANG Yan1, CHEN Bohui1, WU Jiale1, LIU Biao2, *. Effects of glyphosateresistant transgenic soybean on physical enginery of male mice [J]. , 2016, 28(7): 1115-. |
| [14] | LIU Dan, WU Feng-zhi. Effect of phenylalanine ammonialyase transgenic Arabidopsis thaliana on bacterial community in rhizosphere soil [J]. , 2016, 28(12): 2068-2075. |
| [15] | LIU Kai;YANG Yajun;*;TIAN Junce;XU Hongxing;ZHENG Xusong;LYU Zhongxian;*. Multigeneration effect of Bt rice with cry1C and cry2A on survival, development and reproduction of nontarget pest Sogatella furcifera (Horvth) [J]. , 2014, 26(3): 0-730735. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||