Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (9): 2056-2067.DOI: 10.3969/j.issn.1004-1524.20221409
• Animal Science • Previous Articles Next Articles
YUAN Xiaochun(), WANG Yifan, WANG Yayan, SUN Haoran, MENG Ke, LI Xinhai(
)
Received:
2022-09-28
Online:
2023-09-25
Published:
2023-10-09
Contact:
LI Xinhai
CLC Number:
YUAN Xiaochun, WANG Yifan, WANG Yayan, SUN Haoran, MENG Ke, LI Xinhai. Identification and analysis of alternative splicing events related to sheep hair follicle development based on RNA sequencing technology[J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2056-2067.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221409
基因Gene | 正向引物Forward primer (5’→3’) | 反向引物Reverse primer (5’→3’) | 大小Size/bp |
---|---|---|---|
MT1C | CCCTCCTGCAAGAAGAGC | CACAGCAGCTGCACTTGTC | 103 |
KRT23 | TAGCAGATGGCAAGGTAAACAA | GTCAGATCATCCAGGGTCTTTC | 160 |
S100A14 | AGACCCTGATCAAGAATTTCCA | CCGAACTCCAGTTTAGAGTCGT | 178 |
TPRXL | ATGCTCCCAGTGAAAGTACAGA | TCCATCTCACTGATAACTCAGCA | 151 |
RPL6 | GCCTCGGAAACTGTTGAGTC | GAGGCCCAGTCACAAGTAGC | 173 |
GAPDH | TCCACGGCACAGTCAAGG | CACGCCCATCACAAACAT | 239 |
RPL13 | GTCAGGTACCACACGAAGGTT | CACCGAGATCCCAATGGTC | 105 |
Table 1 List of real-time fluorescent quantitative primers
基因Gene | 正向引物Forward primer (5’→3’) | 反向引物Reverse primer (5’→3’) | 大小Size/bp |
---|---|---|---|
MT1C | CCCTCCTGCAAGAAGAGC | CACAGCAGCTGCACTTGTC | 103 |
KRT23 | TAGCAGATGGCAAGGTAAACAA | GTCAGATCATCCAGGGTCTTTC | 160 |
S100A14 | AGACCCTGATCAAGAATTTCCA | CCGAACTCCAGTTTAGAGTCGT | 178 |
TPRXL | ATGCTCCCAGTGAAAGTACAGA | TCCATCTCACTGATAACTCAGCA | 151 |
RPL6 | GCCTCGGAAACTGTTGAGTC | GAGGCCCAGTCACAAGTAGC | 173 |
GAPDH | TCCACGGCACAGTCAAGG | CACGCCCATCACAAACAT | 239 |
RPL13 | GTCAGGTACCACACGAAGGTT | CACCGAGATCCCAATGGTC | 105 |
样品名 Sample name | 原始读段 Raw reads | 干净读段 Clean reads | Q30/% | GC含量 GC content/% | 唯一对比到的read数占比 Unique_mapped reads ratio/% | 对比率 Total_mapped ratio/% |
---|---|---|---|---|---|---|
S1-1 | 80 305 380 | 80 151 468 | 92.90 | 48.51 | 85.82 | 93.65 |
S1-2 | 88 681 572 | 88 514 636 | 93.52 | 50.33 | 84.78 | 96.29 |
S1-3 | 88 639 604 | 88 435 920 | 93.76 | 50.48 | 84.18 | 95.94 |
S1-4 | 82 302 900 | 82 082 050 | 93.75 | 52.49 | 80.81 | 96.52 |
S1-5 | 95 132 446 | 94 861 532 | 93.53 | 50.14 | 83.97 | 95.97 |
S2-1 | 101 606 896 | 101 305 036 | 93.08 | 49.02 | 87.06 | 95.82 |
S2-2 | 111 482 124 | 111 138 096 | 93.53 | 50.04 | 85.72 | 96.13 |
S2-3 | 78 132 386 | 77 918 790 | 94.08 | 49.78 | 86.16 | 96.70 |
S2-4 | 88 934 292 | 88 662 238 | 93.50 | 51.37 | 81.77 | 94.38 |
S2-5 | 88 841 684 | 88 527 154 | 93.48 | 50.42 | 85.05 | 95.57 |
S3-1 | 94 155 288 | 93 804 848 | 92.47 | 51.43 | 83.88 | 95.15 |
S3-2 | 100 794 688 | 100 434 556 | 93.45 | 50.76 | 82.96 | 94.34 |
S3-3 | 79 139 424 | 78 899 488 | 94.13 | 51.69 | 80.02 | 95.91 |
S3-4 | 79 187 140 | 78 889 182 | 93.51 | 53.35 | 82.35 | 94.68 |
S3-5 | 80 678 998 | 80 361 468 | 93.72 | 51.84 | 77.34 | 92.41 |
Table 2 Quality assessment of sequencing data and comparison with reference genome
样品名 Sample name | 原始读段 Raw reads | 干净读段 Clean reads | Q30/% | GC含量 GC content/% | 唯一对比到的read数占比 Unique_mapped reads ratio/% | 对比率 Total_mapped ratio/% |
---|---|---|---|---|---|---|
S1-1 | 80 305 380 | 80 151 468 | 92.90 | 48.51 | 85.82 | 93.65 |
S1-2 | 88 681 572 | 88 514 636 | 93.52 | 50.33 | 84.78 | 96.29 |
S1-3 | 88 639 604 | 88 435 920 | 93.76 | 50.48 | 84.18 | 95.94 |
S1-4 | 82 302 900 | 82 082 050 | 93.75 | 52.49 | 80.81 | 96.52 |
S1-5 | 95 132 446 | 94 861 532 | 93.53 | 50.14 | 83.97 | 95.97 |
S2-1 | 101 606 896 | 101 305 036 | 93.08 | 49.02 | 87.06 | 95.82 |
S2-2 | 111 482 124 | 111 138 096 | 93.53 | 50.04 | 85.72 | 96.13 |
S2-3 | 78 132 386 | 77 918 790 | 94.08 | 49.78 | 86.16 | 96.70 |
S2-4 | 88 934 292 | 88 662 238 | 93.50 | 51.37 | 81.77 | 94.38 |
S2-5 | 88 841 684 | 88 527 154 | 93.48 | 50.42 | 85.05 | 95.57 |
S3-1 | 94 155 288 | 93 804 848 | 92.47 | 51.43 | 83.88 | 95.15 |
S3-2 | 100 794 688 | 100 434 556 | 93.45 | 50.76 | 82.96 | 94.34 |
S3-3 | 79 139 424 | 78 899 488 | 94.13 | 51.69 | 80.02 | 95.91 |
S3-4 | 79 187 140 | 78 889 182 | 93.51 | 53.35 | 82.35 | 94.68 |
S3-5 | 80 678 998 | 80 361 468 | 93.72 | 51.84 | 77.34 | 92.41 |
可变剪接事件类型 Type of AS | AS相关基因数 Number of AS related gene | 可变剪接数量 Number of AS events | 差异可变剪接事件数量,括号中为(上调:下调) Number of differential alternative splicing events (upregulation:downregulation) |
---|---|---|---|
外显子跳跃SE 外显子互斥MXE 5'端可变剪接A5SS 3'端可变剪接A3SS 内含子保留RI 总数Total | 2 169 303 287 484 205 3 448 | 96 906 14 467 4 837 9 220 2 603 128 033 | 2 588(1 077∶1 511) 350(182∶168) 299(153∶146) 524(248∶176) 212(77∶135) 3 973(1 737∶2 136) |
Table 3 The statistical analysis of AS differences in sheep follicles in different periods
可变剪接事件类型 Type of AS | AS相关基因数 Number of AS related gene | 可变剪接数量 Number of AS events | 差异可变剪接事件数量,括号中为(上调:下调) Number of differential alternative splicing events (upregulation:downregulation) |
---|---|---|---|
外显子跳跃SE 外显子互斥MXE 5'端可变剪接A5SS 3'端可变剪接A3SS 内含子保留RI 总数Total | 2 169 303 287 484 205 3 448 | 96 906 14 467 4 837 9 220 2 603 128 033 | 2 588(1 077∶1 511) 350(182∶168) 299(153∶146) 524(248∶176) 212(77∶135) 3 973(1 737∶2 136) |
Fig.1 Number of differentially spliced genes in Dorper wool follicles at different developmental stages S1, Sampling in September 2019 (growth peak period); S2, Sampling in January 2020 (telogen); S3, Sampling in March 2020 (early stage of growth). SE, Skipping exon; RI, Retention intro; MXE, Mutually exclusive exons; A5SS, Alternative 5’splicing site; A3SS, Alternative 3’splicing site. The same as below.
Fig.2 GO enrichment results of differentially spliced genes in hair follicle development at different stages of Dorper sheep A, S1 vs S2; B, S1 vs S3; C, S2 vs S3. Green, Cellular component; Yellow, Biological process; Blue, Molecular function.
Fig.3 Top 30 pathways of splicing gene KEGG enrichment results in different stages of hair follicle development in Dorper sheep A, S1vs S2; B, S1vs S3; C, S2vs S3.
主要富集通路的名称 Names of major enrichment pathways | 主要通路所富集的基因 Genes enriched by major pathways |
---|---|
剪接体Spliceosome 内吞作用Endocytosis 丝裂原活化蛋白激酶信号通路Mitogen activated protein kinase signaling pathway 血管内皮生长因子信号通路Vascular endothelial growth factor signaling pathway 河马信号通路Hippo signaling pathway Rap1信号通路RAS-related protein 1 signaling pathway 细胞外基质-受体相互作用Extracellular matrix-receptor interaction 哺乳动物雷帕霉素靶点信号通路mTOR signaling pathway PI3K-Akt信号通路Phosphatidylinositol-3-kinase-Akt signaling pathway NF-kappaB信号通路Nuclear factor-kappa B signaling pathway 神经营养因子信号通路Neurotrophin signaling pathway | PRL1、SFRS7、PUF60、U2AF1 PIP5K、SMAD2、KIF5、FGFR2、DAB2 BRAF、MAP4K4、STK3、P38、ATF2 PPP3C、SPHK、PXN、PLA2G4 CTNNB1、PARD3、BMP4 PARD3、RAP1A、CSF1、AIP3 COL4A、LAMB2、CD44、CD47 BRAF、CLIP1、LPIN GSK3B、EGFR、GHR、CSF1 BCL2、CSNK2A、NFKB2、BTK FOXO3、BRAF、B-Raf |
Table 4 Enrichment of differentially spliced genes KEGG pathway related to hair follicle development
主要富集通路的名称 Names of major enrichment pathways | 主要通路所富集的基因 Genes enriched by major pathways |
---|---|
剪接体Spliceosome 内吞作用Endocytosis 丝裂原活化蛋白激酶信号通路Mitogen activated protein kinase signaling pathway 血管内皮生长因子信号通路Vascular endothelial growth factor signaling pathway 河马信号通路Hippo signaling pathway Rap1信号通路RAS-related protein 1 signaling pathway 细胞外基质-受体相互作用Extracellular matrix-receptor interaction 哺乳动物雷帕霉素靶点信号通路mTOR signaling pathway PI3K-Akt信号通路Phosphatidylinositol-3-kinase-Akt signaling pathway NF-kappaB信号通路Nuclear factor-kappa B signaling pathway 神经营养因子信号通路Neurotrophin signaling pathway | PRL1、SFRS7、PUF60、U2AF1 PIP5K、SMAD2、KIF5、FGFR2、DAB2 BRAF、MAP4K4、STK3、P38、ATF2 PPP3C、SPHK、PXN、PLA2G4 CTNNB1、PARD3、BMP4 PARD3、RAP1A、CSF1、AIP3 COL4A、LAMB2、CD44、CD47 BRAF、CLIP1、LPIN GSK3B、EGFR、GHR、CSF1 BCL2、CSNK2A、NFKB2、BTK FOXO3、BRAF、B-Raf |
[1] | HOUSCHYAR K S, BORRELLI M R, TAPKING C, et al. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms[J]. Dermatology, 2020, 236(4): 271-280. |
[2] | 张崇志, 孙海洲, 李胜利, 等. 光照和日粮能量干预对绒山羊消化率、毛囊活性和产绒性能的影响[J]. 家畜生态学报, 2017, 38(3): 19-24. |
ZHANG C Z, SUN H Z, LI S L, et al. Effects of photoperiod and diet energy intervention on nutrient digestibility, hair follicles activity, Cashmere production for Cashmere goats[J]. Journal of Domestic Animal Ecology, 2017, 38(3): 19-24. (in Chinese with English abstract) | |
[3] | VELTRI A, LANG C, LIEN W H. Concise review: Wnt signaling pathways in skin development and epidermal stem cells[J]. Stem Cells, 2018, 36(1): 22-35. |
[4] | IMAMURA T. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application[J]. Biological & Pharmaceutical Bulletin, 2014, 37(7): 1081-1089. |
[5] | AKILLI ÖZTÜRK Ö, PAKULA H, CHMIELOWIEC J, et al. Gab1 and mapk signaling are essential in the hair cycle and hair follicle stem cell quiescence[J]. Cell Reports, 2015, 13(3): 561-572. |
[6] | BOTCHKAREV V A. Bone morphogenetic proteins and their antagonists in skin and hair follicle biology[J]. Journal of Investigative Dermatology, 2003, 120(1): 36-47. |
[7] | MA T, LI J Y, LI J P, et al. Expression of miRNA-203 and its target gene in hair follicle cycle development of Cashmere goat[J]. Cell Cycle, 2021, 20(2): 204-210. |
[8] | ROGLER L E, KOSMYNA B, MOSKOWITZ D, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia[J]. Human Molecular Genetics, 2014, 23(2): 368-382. |
[9] | ZHANG Y J, WANG L L, LI Z, et al. Transcriptome profiling reveals transcriptional and alternative splicing regulation in the early embryonic development of hair follicles in the Cashmere goat[J]. Scientific Reports, 2019, 9: 17735. |
[10] | BARALLE F E, GIUDICE J. Alternative splicing as a regulator of development and tissue identity[J]. Nature Reviews Molecular Cell Biology, 2017, 18(7): 437-451. |
[11] | ULE J, BLENCOWE B J. Alternative splicing regulatory networks: functions, mechanisms, and evolution[J]. Molecular Cell, 2019, 76(2): 329-345. |
[12] | ZHANG S H, WU X F, PAN C Y, et al. Identification of novel isoforms of dairy goat EEF1D and their mRNA expression characterization[J]. Gene, 2016, 581(1): 14-20. |
[13] | ZHOU Y, CAI H, XU Y, et al. Novel isoforms of the bovineNuclear factor I/X (CCAAT-binding transcription factor) transcript products and their diverse expression profiles[J]. Animal Genetics, 2014, 45(4): 581-584. |
[14] | 张嘉楠. 绵羊IGF-Ⅰ基因Ⅰ类剪接体对成纤维细胞增殖及凋亡的影响[D]. 哈尔滨: 东北农业大学, 2019. |
ZHANG J N. Effect of sheep IGF-Ⅰ gene Ⅰ splice on the proliferation and apoptosis of fibroblasts[D]. Harbin: Northeast Agricultural University, 2019. (in Chinese with English abstract) | |
[15] | 张立春, 李梦姝, 曹阳, 等. 绵羊VEGF-C基因可变剪切体克隆与序列分析[J]. 中国畜牧杂志, 2018, 54(4): 89-92. |
ZHANG L C, LI M S, CAO Y, et al. Cloning and sequence analysis of sheep VEGF-C gene variable shear body[J]. Chinese Journal of Animal Science, 2018, 54(4): 89-92. (in Chinese) | |
[16] | SHEN S H, PARK J W, LU Z X, et al. rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51): E5593-E5601. |
[17] | PARK E, PAN Z C, ZHANG Z J, et al. The expanding landscape of alternative splicing variation in human populations[J]. The American Journal of Human Genetics, 2018, 102(1): 11-26. |
[18] | BOWLER E, OLTEAN S. Alternative splicing in angiogenesis[J]. International Journal of Molecular Sciences, 2019, 20(9): 2067. |
[19] | BATES D, CUI T, DOUGHTY J M, et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma[J]. Cancer Research, 2002, 62: 4123-4131. |
[20] | QUAN R F, DU W B, ZHENG X A, et al. VEGF165 induces differentiation of hair follicle stem cells into endothelial cells and plays a role in in vivo angiogenesis[J]. Journal of Cellular and Molecular Medicine, 2017, 21(8): 1593-1604. |
[21] | 章会斌, 韩政, 刘阳光, 等. 基于RNA-seq筛选白藜芦醇致猪卵巢颗粒细胞凋亡的可变剪接基因[J]. 中国畜牧杂志, 2022, 58(8): 36-44. |
ZHANG H B, HAN Z, LIU Y G, et al. Screening of alternative splicing genes for apoptosis of porcine ovarian granulosa cells induced by resveratrol based on RNA-seq[J]. Chinese Journal of Animal Science, 2022, 58(8): 36-44. (in Chinese with English abstract) | |
[22] | 张玲. 云南高峰牛和荷斯坦牛肝脏与脾脏组织可变剪接的比较分析[D]. 昆明: 云南大学, 2021. |
ZHANG L. Comparative analysis of alternative splicing of liver and spleen between Yunnan Gaofeng cattle and Holstein cattle[D]. Kunming: Yunnan University, 2021. (in Chinese with English abstract) | |
[23] | 曾东, 余文林, 杨传红, 等. TGF-β各亚型与其受体在猪皮肤及毛囊中的表达[J]. 中国美容医学, 2009, 18(5): 641-644. |
ZENG D, YU W L, YANG C H, et al. Expression charactersitics of TGF-β isoforms and their receptor in pig skin and hair follicles[J]. Chinese Journal of Aesthetic Medicine, 2009, 18(5): 641-644. (in Chinese with English abstract) | |
[24] | CHEN Y, FAN Z M, WANG X X, et al. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration[J]. Stem Cell Research & Therapy, 2020(11):144. |
[25] | SILVIS M R, KREGER B T, LIEN W H, et al. α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1[J]. Science Signaling, 2011, 4(174): e2001823. |
[26] | LI C, FENG C, MA G Y, et al. Time-course RNA-seq analysis reveals stage-specific and melatonin-triggered gene expression patterns during the hair follicle growth cycle in Capra hircus[J]. BMC Genomics, 2022, 23(1):140. |
[27] | LIU Z H, YANG F, ZHAO M, et al. The intragenic mRNA-microRNA regulatory network during telogen-anagen hair follicle transition in the Cashmere goat[J]. Scientific Reports, 2018, 8: 14227. |
[28] | REN S Y, ZHANG Y N, WANG M J C, et al. Hair growth predicts a depression-like phenotype in rats as a mirror of stress traceability[J]. Neurochemistry International, 2021, 148: 105110. |
[29] | KASUYA A, ITO T, TOKURA Y. M2 macrophages promote wound-induced hair neogenesis[J]. Journal of Dermatological Science, 2018, 91(3): 250-255. |
[30] | BAI W L, DANG Y L, WANG J J, et al. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning Cashmere goat during hair follicle cycle[J]. Genetica, 2016, 144(4): 457-467. |
[31] | GEUEKE A, MANTELLATO G, KUESTER F, et al. The anti-apoptotic Bcl-2 protein regulates hair follicle stem cell function[J]. EMBO Reports, 2021, 22(10): e52301. |
[1] | NIE Wei, MENG Ke, RONG Xuan, QIANG Hao, GUO Chenhao, TAO Maohai, FENG Dengzhen. Analysis of GRM1 gene polymorphism and its correlation with meat quality traits in sheep [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 799-808. |
[2] | LIU Lili, GAO Hexuan, YANG Yawen, BAO Yingying, HE Yuqin, YANG Zhijie, CHEN Weigang, GE Wenbo. Expression and distribution of THRβ mRNA and protein in HPO axis of Ganja Tibetan sheep during estrus cycle and anestrus [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 480-488. |
[3] | BAO Yingying, CHEN Weigang, GE Wenbo, HE Yuqin, YANG Zhijie, ZHOU Kairen, YANG Dapeng, YANG Yawen, LIU Lili. Expression of ERβ in hypothalamic-pituitary-ovarian axis of Ganjia Tibetan sheep in estrus cycle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 10-16. |
[4] | TAO Peng, YUE Zhichen, ZHAO Yanting, LEI Juanli, LI Biyuan. Variation of acceptor splicing site of BrSPS1Fb of Chinese cabbage and its effect on splicing [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2068-2074. |
[5] | WANG Xiaowei, FAN Yi, MA Xiaoming, MA Lina, YUE Caijuan, WANG Jin, ZHAO Zhengwei, MA Qing. Quantitative analysis of mRNA expression of Tan sheep coat color candidate genes MC1R and TCF25 [J]. , 2020, 32(8): 1351-1356. |
[6] | CHEN Weigang, BAO Yingying, HE Yuqin, GE Wenbo, ZHANG Xia, HUADAO Cairang, YANG Dapeng, ZHOU Kairen. Expression and distribution of KISS-1/GPR54 on hypothalamic-pituitary-ovary axis in estrous cycle of Ganjia Tibetan sheep [J]. , 2020, 32(6): 971-977. |
[7] | WANG Xiaowei, MA Qing. Genome-wide association studies for coat color in Tan sheep [J]. , 2020, 32(1): 28-34. |
[8] | BAI Junyan, CAO Heng, WANG Xu, YANG Youbing, FAN Hongdeng, FU Xueyan, SHI Kunpeng, DONG Zhihao, LU Xiaoning, LI Xinyue, HAO Weiguang, LI Ziheng, ZHENG Feiyang. Association between the polymorphism of PvuⅡ locus of GH gene and growth traits in sheep [J]. , 2019, 31(9): 1416-1422. |
[9] | LI Wenli, DU Xiaohua, LIU Xia, GAO Jingbo, SHEN Chaochao, ZHANG Chao, LIU Wei. Molecular cloning and expression analysis of FAM134B gene in Tibetan sheep [J]. , 2017, 29(9): 1474-1481. |
[10] | LI Qi, LIU Shuang. Analysis of factors related to weight change of Sunite sheep [J]. , 2017, 29(10): 1630-1636. |
[11] | GAO Jianfeng, LU Zengkui, MA Youji, LI Taotao1, ZHAO Xingxu. Cloning, sequence analysis and tissue expression of MUSTN1 gene in sheep (Ovis aires) [J]. , 2017, 29(10): 1661-1668. |
[12] | WANG Hua, WANG Jianfu, WANG Xinrong, CHENG Shuru*, LI Xiaomei, WANG Zhiming, FAN Qingshan, FU Lixia, LI Shuang, ZHOU Xiaoxia. Association analysis of CAST gene polymorphism with meat quality in five sheep breeds [J]. , 2016, 28(8): 1309-. |
[13] | CHEN Li, LI Guoqin, TIAN Yong, SHEN Junda, TAO Zhengrong, XU Jian, ZENG Tao, LU Lizhi*. Transcriptome analysis of abdominal fats from Peking ducks by RNAseq [J]. , 2016, 28(5): 743-. |
[14] | ZHANG Xiao\|li1,SONG Xiao\|yu1,MA Xiao\|jun1,2,*, CHEN Fu\|qiang1, ZHANG Chen1, ZHANG Xin1. Analysis of polymorphism of MHC\|DRB1 gene and the correlation to mastitis of sheep in Gansu#br# [J]. , 2016, 28(2): 221-. |
[15] | WANG Zhi\|ming1, WANG Jie\|shu1, WANG Yi2, HAN Xiang\|min1,*, WANG Hua1. Correlation analyses between the body weight and body sizes of Gansu alpine fine\|wool sheep [J]. , 2016, 28(1): 28-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||