[1] |
黄静, 张健. 一种基于改进SSD网络的猪个体目标检测方法研究[J]. 软件工程, 2022, 25(8): 25-29.
|
|
HUANG J, ZHANG J. Research on a target detection algorithm of individual pig based on improved SSD network[J]. Software Engineering, 2022, 25(8): 25-29. (in Chinese with English abstract)
|
[2] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: ACM, 2014: 580-587.
|
[3] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
|
[4] |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). December 07-13, 2015, Santiago, Chile. IEEE, 2016: 1440-1448.
|
[5] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
[6] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). June 27-30, 2016, Las Vegas, NV, USA. IEEE, 2016: 779-788.
|
[7] |
蔡舒平, 孙仲鸣, 刘慧, 等. 基于改进型YOLOv4的果园障碍物实时检测方法[J]. 农业工程学报, 2021, 37(2): 36-43.
|
|
CAI S P, SUN Z M, LIU H, et al. Real-time detection methodology for obstacles in orchards using improved YOLOv4[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 36-43. (in Chinese with English abstract)
|
[8] |
陈道怀, 汪杭军. 基于改进YOLOv4的林业害虫检测[J]. 浙江农业学报, 2022, 34(6): 1306-1315.
|
|
CHEN D H, WANG H J. Detection of forest pests based on improved YOLOv4[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1306-1315. (in Chinese with English abstract)
|
[9] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
|
[10] |
WEI C, WANG W J, YANG W H, et al. Deep retinex decomposition for low-light enhancement[EB/OL]. 2018: arXiv: 1808.04560. https://arxiv.org/abs/1808.04560.
|
[11] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 3-19.
|
[12] |
陈世权, 王从庆, 周勇军. 一种基于YOLOv5s和图像融合的行人检测方法[J]. 电光与控制, 2022, 29(7): 96-101.
|
|
CHEN S Q, WANG C Q, ZHOU Y J. A pedestrian detection method based on YOLOv5s and image fusion[J]. Electronics Optics & Control, 2022, 29(7): 96-101. (in Chinese with English abstract)
|
[13] |
王杰, 陈黎卿, 黄莉莉, 等. 基于Retinex的弱光条件下车道线识别方法[J]. 计算机与数字工程, 2019, 47(2): 451-456.
|
|
WANG J, CHEN L Q, HUANG L L, et al. Lane recognition method in weak light condition based on retinex[J]. Computer & Digital Engineering, 2019, 47(2): 451-456. (in Chinese with English abstract)
|