Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (11): 2522-2532.DOI: 10.3969/j.issn.1004-1524.2022.11.21
• Biosystems Engineering • Previous Articles Next Articles
ZHOU Pinzhi1,2(), PEI Yuekun1,2,*(
), WEI Ran1,2, ZHANG Yongfei1,2, GU Yu1,2
Received:
2021-05-07
Online:
2022-11-25
Published:
2022-11-29
Contact:
PEI Yuekun
CLC Number:
ZHOU Pinzhi, PEI Yuekun, WEI Ran, ZHANG Yongfei, GU Yu. Real-time detection of orchard cherry based on YOLOV4 model[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2522-2532.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.11.21
处理 Treatment | 参数值Parameter | |
---|---|---|
第一阶段 First stage | 第二阶段 Second stage | |
Epoch | 0~100 | 100~200 |
Batch size | 6 | 6 |
Lr | 1×10-3 | 1×10-4 |
Optimizer | Adam | Adam |
Table 1 Improved YOLOV4 model training parameters
处理 Treatment | 参数值Parameter | |
---|---|---|
第一阶段 First stage | 第二阶段 Second stage | |
Epoch | 0~100 | 100~200 |
Batch size | 6 | 6 |
Lr | 1×10-3 | 1×10-4 |
Optimizer | Adam | Adam |
网络模型 Network model | AP/% | mAP/% | F1分数 F1-score/% | ||
---|---|---|---|---|---|
未成熟果Immature | 半成熟果Semi-mature | 成熟果mature | |||
YOLOV4 | 85.88 | 83.13 | 86.74 | 85.25 | 78.0 |
YOLOV4+mosaic | 87.72 | 91.90 | 88.31 | 89.31 | 82.0 |
YOLOV4+CBAM | 85.07 | 88.03 | 87.22 | 86.77 | 77.0 |
YOLOV4+k-means | 85.90 | 84.36 | 86.98 | 85.75 | 78.6 |
本文方法Method of this article | 90.92 | 91.98 | 94.04 | 92.31 | 87.3 |
Table 2 The impact of different modules on model performance
网络模型 Network model | AP/% | mAP/% | F1分数 F1-score/% | ||
---|---|---|---|---|---|
未成熟果Immature | 半成熟果Semi-mature | 成熟果mature | |||
YOLOV4 | 85.88 | 83.13 | 86.74 | 85.25 | 78.0 |
YOLOV4+mosaic | 87.72 | 91.90 | 88.31 | 89.31 | 82.0 |
YOLOV4+CBAM | 85.07 | 88.03 | 87.22 | 86.77 | 77.0 |
YOLOV4+k-means | 85.90 | 84.36 | 86.98 | 85.75 | 78.6 |
本文方法Method of this article | 90.92 | 91.98 | 94.04 | 92.31 | 87.3 |
网络模型 Network model | FPS/ (幅·s-1) | AP/% | 精度 Precision/% | F1分数 F1-score/% | ||
---|---|---|---|---|---|---|
未成熟果 Immature | 半成熟果 Semi-mature | 成熟果 mature | ||||
Faster RCNN | 19.43 | 75.81 | 67.29 | 69.00 | 70.70 | 71.3 |
YOLOV3 | 52.13 | 85.79 | 75.15 | 87.92 | 82.95 | 78.6 |
YOLOV4 | 47.77 | 85.88 | 83.13 | 86.74 | 85.25 | 78.0 |
本文方法Method of this article | 40.23 | 90.92 | 91.98 | 94.04 | 92.31 | 87.3 |
Table 3 Comparison test results of different algorithms
网络模型 Network model | FPS/ (幅·s-1) | AP/% | 精度 Precision/% | F1分数 F1-score/% | ||
---|---|---|---|---|---|---|
未成熟果 Immature | 半成熟果 Semi-mature | 成熟果 mature | ||||
Faster RCNN | 19.43 | 75.81 | 67.29 | 69.00 | 70.70 | 71.3 |
YOLOV3 | 52.13 | 85.79 | 75.15 | 87.92 | 82.95 | 78.6 |
YOLOV4 | 47.77 | 85.88 | 83.13 | 86.74 | 85.25 | 78.0 |
本文方法Method of this article | 40.23 | 90.92 | 91.98 | 94.04 | 92.31 | 87.3 |
[1] | 孙坦, 黄永文, 鲜国建, 等. 新一代信息技术驱动下的农业信息化发展思考[J]. 农业图书情报学报, 2021, 33(33): 4-15. |
SUN T, HUANG Y W, XIAN G J, et al. Considerations for the development of agricultural informatization driven by a new generation of information technologies[J]. Journal of Library and Information Science in Agriculture, 2021, 33(3): 4-15. (in Chinese with English abstract) | |
[2] | 邹谜, 伍世虔, 王欣. 一种用于机器人水果采摘的快速识别方法[J]. 农机化研究, 2019, 41(1): 206-210,252. |
ZOU M, WU S Q, WANG X. A fast matching recognition method for fruit picking[J]. Journal of Agricultural Mechanization Research, 2019, 41(1): 206-210,252. (in Chinese with English abstract) | |
[3] | 颜申, 宋文浩, 陈光, 等. 基于视觉的橘类水果识别系统设计[J]. 佳木斯大学学报(自然科学版), 2020, 38(38): 41-44. |
YAN S, SONG W H, CHEN G, et al. Design of orange-based fruit recognition system based on vision[J]. Journal of Jiamusi University (Natural Science Edition), 2020, 38(1): 41-44. (in Chinese with English abstract) | |
[4] | 初广丽, 张伟, 王延杰, 等. 基于机器视觉的水果采摘机器人目标识别方法[J]. 中国农机化学报, 2018, 39(39): 83-88. |
CHU G L, ZHANG W, WANG Y J, et al. A method of fruit picking robot target identification based on machine vision[J]. Journal of Chinese Agricultural Mechanization, 2018, 39(2): 83-88. (in Chinese with English abstract) | |
[5] |
YU L Y, XIONG J T, FANG X Q, et al. A litchi fruit recognition method in a natural environment using RGB-D images[J]. Biosystems Engineering, 2021, 204: 50-63.
DOI URL |
[6] |
许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8):10-25.
DOI |
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8):10-25. (in Chinese with English abstract)
DOI |
|
[7] | 李国进, 胡洁, 艾矫燕. 基于改进SSD算法的车辆检测[J]. 计算机工程, 2022, 48(1):266-274. |
LI G J, HU J, AI J Y. Vehicle detection based on improved SSD[J]. Computer Engineering, 2022, 48(1):266-274. (in Chinese with English abstract) | |
[8] | 杨耘, 李龙威, 高思岩, 等. 基于YOLO v3网络训练优化的高分遥感影像目标检测[J]. 激光与光电子学进展, 2021, 58(16):147-153. |
YANG Y, LI L W, GAO S Y, et al. High-resolution remote sensing image target detection based on YOLO v3network training optimization[J]. Laser & Optoelectronics Progress, 2021, 58(16):147-153. (in Chinese with English abstract) | |
[9] | 洪敏杰, 吴刚, 刘星辰, 等. 基于注意力机制的肺结节检测算法[J]. 计算机工程与设计, 2021, 42(42): 83-88. |
HONG M J, WU G, LIU X C, et al. Detection algorithm of lung nodule based on attention mechanism[J]. Computer Engineering and Design, 2021, 42(1): 83-88. (in Chinese with English abstract) | |
[10] | 唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(38): 32-39. |
TANG R C, WU X R. Real-time detection of passion fruit based on improved YOLO-V3 network[J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(6): 32-39. (in Chinese with English abstract) | |
[11] | SCHUMANN A W, MOOD N S, MUNGOFA P D, et al. Detection of three fruit maturity stages in wild blueberry fields using deep learning artificial neural networks[C]// 2019 Boston, Massachusetts: American Society of Agricultural and Biological Engineers, 2019: 1. |
[12] | 朱旭, 马淏, 姬江涛, 等. 基于Faster R-CNN的蓝莓冠层果实检测识别分析[J]. 南方农业学报, 2020, 51(51): 1493-1501. |
ZHU X, MA H, JI J T, et al. Detecting and identifying blueberry canopy fruits based on Faster R-CNN[J]. Journal of Southern Agriculture, 2020, 51(6): 1493-1501. (in Chinese with English abstract) | |
[13] | SONG Z Z, FU L S, WU J Z, et al. Kiwifruit detection in field images using Faster R-CNN with VGG16[J]. IFAC-PapersOnLine, 2019, 52(30): 76-81. |
[14] | REDMON J, FARHADI A. YOLOv3: an incremental improvement[J/OL]. arXiv preprint arXiv:1804.02767, 2018. |
[15] | WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). June 14-19, 2020, Seattle, WA, USA. IEEE, 2020: 1571-1580. |
[16] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]//Computer Vision - ECCV 2018. Cham: Springer International Publishing, 2018: 3-19. |
[1] | JIN Baoxia, WANG Weijie, ZHU Xiaolin, WANG Xian, WEI Xiaohong. Effects of different hormone combinations on tomato in vitro regeneration and related gene expression [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1889-1900. |
[2] | WANG Huiru, LI Jianshe, YAN Sihua, GAO Yanming. Effect of prunning patterns on canopy light interception characteristics and chlorophyll fluorescence parameters in cherry tomato [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 525-533. |
[3] | PEI Yun, XU Xiuhong, LU Jinbiao, CHEN Amin, ZHANG Wanping. Genetic diversity analysis of 151 cherry tomato resources in Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 310-316. |
[4] | ZHANG Zhigang, LIU Yufang, LI Changcheng, LI Hong, CHENG Ping, YANG Lu. Effect of different maturity on fruit quality of apricot [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1402-1408. |
[5] | ZHANG Ning, WU Huarui, HAN Xiao, MIAO Yisheng. Tomato disease recognition scheme based on multi-scale and attention mechanism [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1329-1338. |
[6] | HU Xiaodan, WANG Laidi, YANG Ting, BAI Hao, JIANG Yong, WANG Zhixiu, WANG Shasha, CHEN Guohong, CHANG guobin. Validation and function prediction of circ-FBLN2 in duck adipocytes [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 602-609. |
[7] | ZHOU Yanchao, XUE Kun, GE Haiyan, CHEN Huoying, LIU Yang. Comprehensive evaluation of cherry tomato quality based on principal component analysis and cluster analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2320-2329. |
[8] | LIANG Le, LIU Juan, LI Xiaomei, LIAO Jichao, LI Huanxiu, TANG Yi. Effects of intercropping with different genotypes of cherry tomato on fruit quality and selenium content [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1870-1878. |
[9] | TAN Guanghui, QIN Yuanyu, LI Jiezhang, WU Lei, YUE Yong, ZHANG Yiyu. Single nucleotide polymorphism screening and bioinformatics analysis of ATF4 gene in Cherry Valley ducks [J]. , 2020, 32(2): 218-225. |
[10] | ZHANG Fang, WANG Peixin, HE Yong, LUO Huifeng, SHOU Guozhong. Study on crop growth environment factors in mini-greenhouse in balcony based on internet of things [J]. , 2020, 32(2): 234-242. |
[11] | MA Xiaohua, YU Zheping, ZHENG Xiliang, HU Xiaojin, ZHANG Shuwen, QI Xingjiang, MA Jingyan. Introduction experiment and phenotype cluster analysis of Chinese bayberry in Jingzhou [J]. , 2020, 32(11): 1987-1993. |
[12] | YANG Zhi, LI Wenyi, GAO Yuntao, XIONG Huabin, CHEN Yijian, YANG Huijuan. Optimization of extraction process of total flavonoids from Acerola cherry by response surface methodology and their antioxidant activities [J]. , 2020, 32(10): 1866-1872. |
[13] | CHEN Bing, XU Jing, LUO Qihui, HUANG Chao, LIU Wentao, WU Hong, CHEN Jingfei, CHEN Ping, GAO Qi, MA Wenjing, CHEN Zhengli. Pathological study on duck-origin goose Parvovirus strain QH-L01 infection of Cherry Valley duck [J]. , 2018, 30(6): 932-938. |
[14] | XUE Wanwan, GONG Ronggao, DING Jianlin, LI Keqiang, ZOU Jin, LI Rulong, PENG Honggui. Effect of gibberellin on fruit quality and anatomical structure of Hongdeng sweet cherry [J]. , 2018, 30(6): 978-984. |
[15] | LI Jingxia, XIA Hui, LYU Xiulan, WANG Jin, LIANG Dong. Cloning and expression analysis of PacAMR1 gene in sweet cherry [J]. , 2018, 30(4): 607-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||