Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (11): 2673-2687.DOI: 10.3969/j.issn.1004-1524.20221632
• Environmental Science • Previous Articles Next Articles
WANG Wei(), LIU Jixiang, SUN Linhe, DU Fengfeng, LI Jinfeng, CHANG Yajun*(
), YAO Dongrui
Received:
2022-11-16
Online:
2023-11-25
Published:
2023-12-04
CLC Number:
WANG Wei, LIU Jixiang, SUN Linhe, DU Fengfeng, LI Jinfeng, CHANG Yajun, YAO Dongrui. Metabolomics analysis of allelochemical phenolic acids and fatty acids in various organs of floating bed water dropwort[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2673-2687.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221632
处理组 Treatments | 种植水体积 Volume of cultured water/mL | 种植水占比 Proportion of cultured water/% | 细胞密度 Cell density/mL-1 | 颜色 Colour | 絮状沉淀 Flocky precipitate |
---|---|---|---|---|---|
A | 0 | 0 | 18.6×108±103 | 墨绿色Deep green | 无Without |
B | 25 | 12.5 | 10.9×107±87 | 黄色Yellow | 少量Paucity |
C | 50 | 25.0 | — | 无色Colourless | 大量Mass |
Table 1 Effect of cultured water of water dropwort on the growth of Microcystis aeruginosa
处理组 Treatments | 种植水体积 Volume of cultured water/mL | 种植水占比 Proportion of cultured water/% | 细胞密度 Cell density/mL-1 | 颜色 Colour | 絮状沉淀 Flocky precipitate |
---|---|---|---|---|---|
A | 0 | 0 | 18.6×108±103 | 墨绿色Deep green | 无Without |
B | 25 | 12.5 | 10.9×107±87 | 黄色Yellow | 少量Paucity |
C | 50 | 25.0 | — | 无色Colourless | 大量Mass |
Fig.2 Total ion chromatogram patterns of samples in positive and negative ion models The3 curves were repeated in 3 samples. The higher the coincidence degree of the 3 curves, the better the repeatability of the test. The number in the figure is the time of the peak (min).
Fig.3 Heatmap of metabolites contents in planting water of water dropwort in different development stages Each cube represents the content of a metabolite in a sample. The redder the color is, the higher the content is. The bluer the color is, the lower the content is. Each period 1-3 represent 3 biological repeats, A and B were 2 technical repeats. The same as below.
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | 苯甲酸Benzoic acid | 0.954 | 99.8 | 4.723 | 1.252×10-8 | 1.459 |
Seedling stage and | 弗拉西汀Fraxetin | 2.483 | 97.0 | 92.063 | 1.881×10-2 | 1.274 |
reproductive stage | 对羟基苯甲酸丙酯Propylparaben | 0.909 | 94.6 | 0.213 | 8.183×10-3 | 1.320 |
3',4'-二羟基苯基丙酮 | 0.935 | 76.8 | 0.234 | 5.560×10-3 | 1.331 | |
3',4'-Dihydroxyphenylacetone | ||||||
幼苗期与成熟期 | 苯甲酸Benzoic acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 水杨酸Salicylic acid | 1.991 | 98.2 | 5.846 | 1.014×10-6 | 1.555 |
mature stage | 咖啡酸Caffeic acid | 6.594 | 97.4 | 5.023 | 2.018×10-3 | 1.282 |
2-甲基-4,6-二硝基苯酚 | 0.790 | 96.5 | 2.852 | 7.863×10-4 | 1.332 | |
3-2-Methyl-4,6-dinitrophenol | ||||||
4-羟基苯甲醛 4-Hydroxybenzaldehyde | 2.511 | 95.7 | 2.753 | 5.664×10-4 | 1.369 | |
阿魏酸Ferulic acid | 2.626 | 94.9 | 2.122 | 2.857×10-3 | 1.264 | |
3-氨基水杨酸 3-Aminosalicylic acid | 4.934 | 94.4 | 2.868 | 1.536×10-3 | 1.302 | |
儿茶酚Catechol | 0.647 | 85.7 | 3.054 | 1.595×10-2 | 1.100 | |
2-(2'-羟基-3,5'-二叔丁基苯基)-5-氯苯 | 0.802 | 84.3 | 18.531 | 1.371×10-4 | 1.424 | |
并三唑 2-(2'-Hydroxy-3,5'-di-tert-butylphenyl)- 5-chlorobenzotriazole | ||||||
3,5-二羟基苯甲酸3,5-Dihydroxybenzoic acid | 7.220 | 81.8 | 8.163 | 1.049×10-2 | 1.145 | |
4-二硝基苯酚 2,4-Dinitrophenol | 0.821 | 73.8 | 2.389 | 3.328×10-3 | 1.229 |
Table 2 Phenolic acid allelochemicals with significant differences in planting water of water dropwort in different developmental stages
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | 苯甲酸Benzoic acid | 0.954 | 99.8 | 4.723 | 1.252×10-8 | 1.459 |
Seedling stage and | 弗拉西汀Fraxetin | 2.483 | 97.0 | 92.063 | 1.881×10-2 | 1.274 |
reproductive stage | 对羟基苯甲酸丙酯Propylparaben | 0.909 | 94.6 | 0.213 | 8.183×10-3 | 1.320 |
3',4'-二羟基苯基丙酮 | 0.935 | 76.8 | 0.234 | 5.560×10-3 | 1.331 | |
3',4'-Dihydroxyphenylacetone | ||||||
幼苗期与成熟期 | 苯甲酸Benzoic acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 水杨酸Salicylic acid | 1.991 | 98.2 | 5.846 | 1.014×10-6 | 1.555 |
mature stage | 咖啡酸Caffeic acid | 6.594 | 97.4 | 5.023 | 2.018×10-3 | 1.282 |
2-甲基-4,6-二硝基苯酚 | 0.790 | 96.5 | 2.852 | 7.863×10-4 | 1.332 | |
3-2-Methyl-4,6-dinitrophenol | ||||||
4-羟基苯甲醛 4-Hydroxybenzaldehyde | 2.511 | 95.7 | 2.753 | 5.664×10-4 | 1.369 | |
阿魏酸Ferulic acid | 2.626 | 94.9 | 2.122 | 2.857×10-3 | 1.264 | |
3-氨基水杨酸 3-Aminosalicylic acid | 4.934 | 94.4 | 2.868 | 1.536×10-3 | 1.302 | |
儿茶酚Catechol | 0.647 | 85.7 | 3.054 | 1.595×10-2 | 1.100 | |
2-(2'-羟基-3,5'-二叔丁基苯基)-5-氯苯 | 0.802 | 84.3 | 18.531 | 1.371×10-4 | 1.424 | |
并三唑 2-(2'-Hydroxy-3,5'-di-tert-butylphenyl)- 5-chlorobenzotriazole | ||||||
3,5-二羟基苯甲酸3,5-Dihydroxybenzoic acid | 7.220 | 81.8 | 8.163 | 1.049×10-2 | 1.145 | |
4-二硝基苯酚 2,4-Dinitrophenol | 0.821 | 73.8 | 2.389 | 3.328×10-3 | 1.229 |
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | DL-乳酸DL-Carnitine | 7.400 | 97.5 | 0.092 | 6.464×10-6 | 2.122 |
Seedling stage and | 硬脂酸Stearic acid | 0.966 | 95.7 | 2.393 | 1.097×10-4 | 4.559 |
reproductive stage | 壬二酸Azelaic acid | 1.773 | 91.6 | 8.601 | 6.691×10-8 | 1.092 |
幼苗期与成熟期 | 羟基丁酸3-Hydroxybutyric acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 柠檬酸Citric acid | 13.655 | 99.1 | 1.736 | 2.097×10-2 | 1.068 |
mature stage | 3,3-二甲基戊二酸3,3-Dimethylglutaric acid | 2.420 | 97.9 | 2.187 | 1.997×10-4 | 1.401 |
硬脂酸Stearic acid | 0.966 | 95.7 | 1.637 | 7.875×10-3 | 1.166 | |
3-叔丁基己二酸3-tert-Butyladipic acid | 4.784 | 93.6 | 2.323 | 2.965×10-4 | 1.387 | |
癸酸Decanoic acid | 1.289 | 88.3 | 70.943 | 1.023×10-6 | 1.548 |
Table 3 Fatty acid allelochemicals with significant differences in planting water of water dropwort in different developmental stages
时期 Stage | 化感物质 Allelochemical | 保留时间 Retention time/min | mzCloud 最佳匹配 mzCloud best match | 差异倍数 Fold change | P值 P value | 变量权重 Variable importance in projection |
---|---|---|---|---|---|---|
幼苗期与繁殖期 | DL-乳酸DL-Carnitine | 7.400 | 97.5 | 0.092 | 6.464×10-6 | 2.122 |
Seedling stage and | 硬脂酸Stearic acid | 0.966 | 95.7 | 2.393 | 1.097×10-4 | 4.559 |
reproductive stage | 壬二酸Azelaic acid | 1.773 | 91.6 | 8.601 | 6.691×10-8 | 1.092 |
幼苗期与成熟期 | 羟基丁酸3-Hydroxybutyric acid | 0.715 | 99.9 | 1.448 | 1.659×10-2 | 1.071 |
Seedling stage and | 柠檬酸Citric acid | 13.655 | 99.1 | 1.736 | 2.097×10-2 | 1.068 |
mature stage | 3,3-二甲基戊二酸3,3-Dimethylglutaric acid | 2.420 | 97.9 | 2.187 | 1.997×10-4 | 1.401 |
硬脂酸Stearic acid | 0.966 | 95.7 | 1.637 | 7.875×10-3 | 1.166 | |
3-叔丁基己二酸3-tert-Butyladipic acid | 4.784 | 93.6 | 2.323 | 2.965×10-4 | 1.387 | |
癸酸Decanoic acid | 1.289 | 88.3 | 70.943 | 1.023×10-6 | 1.548 |
酚酸类 Phenolic acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
没食子酸Gallic acid | 1.19 | 1.00 | 4.65 | 0.32±0.01 b | 0.16±0.09 c | 3.26±0.01 a |
苯丙氨酸L-Phenylalanine | 0.07 | 0.12 | 0.08 | 0.02±0.01 b | 0.02±0.01 b | 0.06±0.01 a |
原儿茶酸3,4-Dihydroxybenzoic acid | 0.28 | 0.32 | 0.22 | 0.08±0.01 b | 0.05±0.02 b | 0.15±0.01 a |
原儿茶醛Protocatechualdehyde | 1.06 | 0.79 | 1.24 | 0.28±0.04 b | 0.12±0.01 b | 0.87±0.10 a |
香草酸Vanillic acid | 2.66 | 3.31 | 6.45 | 0.71±0.01 b | 0.51±0.07 b | 4.52±0.44 a |
咖啡酸Caffeic acid | 28.76 | 18.77 | 53.16 | 7.70±0.74 b | 2.92±0.17 c | 37.26±2.21 a |
丁香酸Syringic acid | 0.25 | 0.10 | 0.15 | 0.07±0.01 b | 0.02±0.01 c | 0.10±0.01 a |
表儿茶素L-Epicatechin | 0.010 | 0.003 | 0.002 | 0.01×10-1±0.01 ab | 0.05×10-2±0.01 b | 0.02×10-1±0.01 a |
4-羟基苯甲酸4-Hydroxybenzoic acid | 4.16 | 4.78 | 1.61 | 1.11±0.14 a | 0.74±0.01 b | 1.13±0.03 a |
香草醛Vanillin | 4.18 | 4.74 | 1.60 | 1.12±0.16 a | 0.74±0.04 b | 1.12±0.06 a |
4-羟基肉桂酸4-Hydroxycinnamic acid | 14.4 | 11.21 | 5.44 | 3.86±0.29 a | 1.75±1.12 a | 3.81±0.33 a |
丁香醛Syringaldehyde | 0.64 | 0.91 | 1.94 | 0.17±0.01 b | 0.14±0.08 b | 1.36±0.08 a |
阿魏酸Ferulic acid | 41.26 | 52.54 | 21.69 | 11.05±0.62 b | 8.18±0.33 b | 15.20±1.98 a |
3,5-二甲氧基肉桂酸 | 0.22 | 0.63 | 1.33 | 0.06±0.01 b | 0.10±0.02 b | 0.93±0.21 a |
3,5-Dimethoxycinnamic acid | ||||||
水杨酸Salicylic acid | 0.06 | 0.08 | 0.05 | 0.01±0.01 b | 0.01±0.01 b | 0.04±0.01 a |
苯甲酸Benzoic acid | 0.58 | 0.56 | 0.20 | 0.15±0.02 a | 0.09±0.03 b | 0.14±0.01 a |
氢化肉桂酸Hydrocinnamic acid | 0.18 | 0.01 | 0.02 | 0.05±0.01 a | 0.02×10-1±0.01 c | 0.01±0.01 b |
反式肉桂酸Trans-cinnamic acid | 0.05 | 0.12 | 0.17 | 0.01±0.01 b | 0.02±0.01 b | 0.12±0.02 a |
Table 4 Analysis on the proportion and content of phenolic acid in root, stem and leaf of water dropwort
酚酸类 Phenolic acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||
---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |
没食子酸Gallic acid | 1.19 | 1.00 | 4.65 | 0.32±0.01 b | 0.16±0.09 c | 3.26±0.01 a |
苯丙氨酸L-Phenylalanine | 0.07 | 0.12 | 0.08 | 0.02±0.01 b | 0.02±0.01 b | 0.06±0.01 a |
原儿茶酸3,4-Dihydroxybenzoic acid | 0.28 | 0.32 | 0.22 | 0.08±0.01 b | 0.05±0.02 b | 0.15±0.01 a |
原儿茶醛Protocatechualdehyde | 1.06 | 0.79 | 1.24 | 0.28±0.04 b | 0.12±0.01 b | 0.87±0.10 a |
香草酸Vanillic acid | 2.66 | 3.31 | 6.45 | 0.71±0.01 b | 0.51±0.07 b | 4.52±0.44 a |
咖啡酸Caffeic acid | 28.76 | 18.77 | 53.16 | 7.70±0.74 b | 2.92±0.17 c | 37.26±2.21 a |
丁香酸Syringic acid | 0.25 | 0.10 | 0.15 | 0.07±0.01 b | 0.02±0.01 c | 0.10±0.01 a |
表儿茶素L-Epicatechin | 0.010 | 0.003 | 0.002 | 0.01×10-1±0.01 ab | 0.05×10-2±0.01 b | 0.02×10-1±0.01 a |
4-羟基苯甲酸4-Hydroxybenzoic acid | 4.16 | 4.78 | 1.61 | 1.11±0.14 a | 0.74±0.01 b | 1.13±0.03 a |
香草醛Vanillin | 4.18 | 4.74 | 1.60 | 1.12±0.16 a | 0.74±0.04 b | 1.12±0.06 a |
4-羟基肉桂酸4-Hydroxycinnamic acid | 14.4 | 11.21 | 5.44 | 3.86±0.29 a | 1.75±1.12 a | 3.81±0.33 a |
丁香醛Syringaldehyde | 0.64 | 0.91 | 1.94 | 0.17±0.01 b | 0.14±0.08 b | 1.36±0.08 a |
阿魏酸Ferulic acid | 41.26 | 52.54 | 21.69 | 11.05±0.62 b | 8.18±0.33 b | 15.20±1.98 a |
3,5-二甲氧基肉桂酸 | 0.22 | 0.63 | 1.33 | 0.06±0.01 b | 0.10±0.02 b | 0.93±0.21 a |
3,5-Dimethoxycinnamic acid | ||||||
水杨酸Salicylic acid | 0.06 | 0.08 | 0.05 | 0.01±0.01 b | 0.01±0.01 b | 0.04±0.01 a |
苯甲酸Benzoic acid | 0.58 | 0.56 | 0.20 | 0.15±0.02 a | 0.09±0.03 b | 0.14±0.01 a |
氢化肉桂酸Hydrocinnamic acid | 0.18 | 0.01 | 0.02 | 0.05±0.01 a | 0.02×10-1±0.01 c | 0.01±0.01 b |
反式肉桂酸Trans-cinnamic acid | 0.05 | 0.12 | 0.17 | 0.01±0.01 b | 0.02±0.01 b | 0.12±0.02 a |
脂肪酸类 Fatty acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |||||||
葵酸Decanoate | 0.21 | 0.22 | 0.14 | 6.52±0.07 a | 6.54±0.04 a | 6.54±0.04 a | ||||||
十一醇Undecanoate | 0.65 | 0.67 | 0.43 | 20.31±0.22 a | 19.98±0.28 a | 20.15±0.09 a | ||||||
月桂酸Laurate | 0.87 | 0.91 | 0.59 | 27.26±0.27 a | 27.33±0.20 a | 27.46±0.22 a | ||||||
十三碳酸Tridecanoate | 0.85 | 0.89 | 0.57 | 26.71±0.26 a | 26.53±0.27 a | 26.66±0.13 a | ||||||
肉豆蔻酸Myristate | 1.24 | 1.26 | 0.85 | 38.73±0.69 a | 37.69±0.91 a | 39.54±0.50 a | ||||||
肉豆蔻脑酸Myristoleate | 1.46 | 1.52 | 0.97 | 45.69±0.42 a | 45.58±0.40 a | 45.14±0.40 a | ||||||
十五烷酸Pentadecanoate | 0.73 | 0.76 | 0.49 | 22.96±0.26 a | 22.90±0.34 a | 22.88±0.15 a | ||||||
十五碳烯酸Pentadecenoate | 0.79 | 0.83 | 0.54 | 24.83±0.33 a | 24.95±0.08 a | 24.90±0.19 a | ||||||
棕榈酸Palmitate | 20.53 | 19.75 | 16.78 | 641.92±26.54 b | 590.62±27.56 b | 778.74±8.22 a | ||||||
棕榈油酸Palmitoleate | 1.42 | 1.38 | 0.89 | 44.36±1.59 a | 41.23±0.32 b | 41.15±0.19 b | ||||||
十七烷酸Heptadecanoate | 0.56 | 0.59 | 0.38 | 17.48±0.20 a | 17.51±0.30 a | 17.78±0.09 a | ||||||
十七碳烯酸Heptadecenoate | 9.42 | 8.75 | 5.71 | 294.44±15.07 a | 261.79±9.40 a | 265.16±13.61 a | ||||||
硬脂酸Stearate | 14.42 | 12.65 | 8.67 | 450.70±14.32 a | 378.33±15.46 b | 402.62±15.97 ab | ||||||
反油酸Elaidate | 10.46 | 10.95 | 1.25 | 326.99±17.35 a | 327.64±45.34 a | 58.18±0.61 b | ||||||
油酸Oleate | 0.31 | 0.37 | 0.71 | 9.67±0.66 b | 11.17±2.20 b | 32.75±1.96 a | ||||||
反亚油酸Linoelaidate | 4.99 | 4.89 | 7.69 | 155.97±2.59 b | 146.37±13.96 b | 357.06±16.64 a | ||||||
亚油酸Linoleate | 4.84 | 4.71 | 7.62 | 151.22±2.29 b | 140.78±14.60 b | 353.45±16.88 a | ||||||
花生酸Arachidate | 0.48 | 0.52 | 0.33 | 15.11±0.03 a | 15.66±0.53 a | 15.11±0.19 a | ||||||
γ-亚麻酸γ-Linolenate | 1.09 | 2.03 | 13.16 | 34.08±1.07 b | 60.70±3.62 b | 610.99±24.90 a | ||||||
11-二十碳烯酸11-Eicosenoate | 1.14 | 1.16 | 5.93 | 35.70±1.06 b | 34.71±0.40 b | 275.29±9.58 a | ||||||
亚麻酸Linolenate | 1.25 | 2.19 | 10.57 | 39.02±0.89 b | 65.49±6.02 b | 490.67±19.78 a | ||||||
二十一烷酸Heneicosanoate | 0.59 | 0.62 | 0.90 | 18.34±0.16 b | 18.46±0.19 b | 41.71±1.81 a | ||||||
二十碳二烯酸11,14-Eicosadienoate | 0.98 | 1.03 | 0.68 | 30.52±0.40 a | 30.75±0.27 a | 31.36±0.38 a | ||||||
山嵛酸Behenate | 0.82 | 0.89 | 0.59 | 25.67±0.42 b | 26.69±0.47 ab | 27.43±0.47 a | ||||||
顺-8,11,14-二十碳三烯酸 | 1.21 | 1.26 | 0.82 | 37.98±0.50 a | 37.73±0.27 a | 38.18±0.25 a | ||||||
Cis-8,11,14-eicosatrienoic acid | ||||||||||||
芥酸Erucate | 5.13 | 4.84 | 3.20 | 160.50±4.42 a | 144.72±4.28 a | 148.52±5.95 a | ||||||
1,14,17-顺-二十碳三烯酸 | 1.54 | 1.55 | 1.17 | 48.12±1.38 b | 46.42±0.29 b | 54.13±0.34 a | ||||||
1,14,17-Eicosatrienoate | ||||||||||||
二十三酸Tricosanoate | 0.68 | 0.71 | 0.46 | 21.28±0.28 a | 21.16±0.25 a | 21.31±0.19 a | ||||||
花生四烯酸Arachidonate | 1.85 | 2.18 | 1.47 | 57.96±0.12 b | 65.29±0.08 a | 68.00±0.91 a | ||||||
二十二碳二烯酸Docosadienoate | 1.60 | 1.68 | 1.08 | 50.01±0.30 a | 50.36±0.54 a | 50.27±0.41 a | ||||||
木蜡酸Lignocerate | 1.85 | 1.91 | 1.28 | 57.78±0.84 ab | 57.16±0.33 b | 59.55±0.33 a | ||||||
二十碳五烯酸Eicosapentaenoate | 1.53 | 1.61 | 1.04 | 47.86±0.49 a | 48.02±0.28 a | 48.06±0.37 a | ||||||
二十四碳烯酸Nervonate | 1.91 | 2.00 | 1.29 | 59.65±0.26 a | 59.85±0.47 a | 59.68±0.46 a | ||||||
二十二碳六烯酸Docosahexaenoate | 2.58 | 2.70 | 1.74 | 80.66±0.83 a | 80.86±0.69 a | 80.94±0.77 a |
Table 5 Analysis on the proportion and content of fatty acids in root, stem and leaf of water dropwort
脂肪酸类 Fatty acid | 占比Proportion/% | 含量Content/(ng·mg-1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
根Root | 茎Stem | 叶Leaf | 根Root | 茎Stem | 叶Leaf | |||||||
葵酸Decanoate | 0.21 | 0.22 | 0.14 | 6.52±0.07 a | 6.54±0.04 a | 6.54±0.04 a | ||||||
十一醇Undecanoate | 0.65 | 0.67 | 0.43 | 20.31±0.22 a | 19.98±0.28 a | 20.15±0.09 a | ||||||
月桂酸Laurate | 0.87 | 0.91 | 0.59 | 27.26±0.27 a | 27.33±0.20 a | 27.46±0.22 a | ||||||
十三碳酸Tridecanoate | 0.85 | 0.89 | 0.57 | 26.71±0.26 a | 26.53±0.27 a | 26.66±0.13 a | ||||||
肉豆蔻酸Myristate | 1.24 | 1.26 | 0.85 | 38.73±0.69 a | 37.69±0.91 a | 39.54±0.50 a | ||||||
肉豆蔻脑酸Myristoleate | 1.46 | 1.52 | 0.97 | 45.69±0.42 a | 45.58±0.40 a | 45.14±0.40 a | ||||||
十五烷酸Pentadecanoate | 0.73 | 0.76 | 0.49 | 22.96±0.26 a | 22.90±0.34 a | 22.88±0.15 a | ||||||
十五碳烯酸Pentadecenoate | 0.79 | 0.83 | 0.54 | 24.83±0.33 a | 24.95±0.08 a | 24.90±0.19 a | ||||||
棕榈酸Palmitate | 20.53 | 19.75 | 16.78 | 641.92±26.54 b | 590.62±27.56 b | 778.74±8.22 a | ||||||
棕榈油酸Palmitoleate | 1.42 | 1.38 | 0.89 | 44.36±1.59 a | 41.23±0.32 b | 41.15±0.19 b | ||||||
十七烷酸Heptadecanoate | 0.56 | 0.59 | 0.38 | 17.48±0.20 a | 17.51±0.30 a | 17.78±0.09 a | ||||||
十七碳烯酸Heptadecenoate | 9.42 | 8.75 | 5.71 | 294.44±15.07 a | 261.79±9.40 a | 265.16±13.61 a | ||||||
硬脂酸Stearate | 14.42 | 12.65 | 8.67 | 450.70±14.32 a | 378.33±15.46 b | 402.62±15.97 ab | ||||||
反油酸Elaidate | 10.46 | 10.95 | 1.25 | 326.99±17.35 a | 327.64±45.34 a | 58.18±0.61 b | ||||||
油酸Oleate | 0.31 | 0.37 | 0.71 | 9.67±0.66 b | 11.17±2.20 b | 32.75±1.96 a | ||||||
反亚油酸Linoelaidate | 4.99 | 4.89 | 7.69 | 155.97±2.59 b | 146.37±13.96 b | 357.06±16.64 a | ||||||
亚油酸Linoleate | 4.84 | 4.71 | 7.62 | 151.22±2.29 b | 140.78±14.60 b | 353.45±16.88 a | ||||||
花生酸Arachidate | 0.48 | 0.52 | 0.33 | 15.11±0.03 a | 15.66±0.53 a | 15.11±0.19 a | ||||||
γ-亚麻酸γ-Linolenate | 1.09 | 2.03 | 13.16 | 34.08±1.07 b | 60.70±3.62 b | 610.99±24.90 a | ||||||
11-二十碳烯酸11-Eicosenoate | 1.14 | 1.16 | 5.93 | 35.70±1.06 b | 34.71±0.40 b | 275.29±9.58 a | ||||||
亚麻酸Linolenate | 1.25 | 2.19 | 10.57 | 39.02±0.89 b | 65.49±6.02 b | 490.67±19.78 a | ||||||
二十一烷酸Heneicosanoate | 0.59 | 0.62 | 0.90 | 18.34±0.16 b | 18.46±0.19 b | 41.71±1.81 a | ||||||
二十碳二烯酸11,14-Eicosadienoate | 0.98 | 1.03 | 0.68 | 30.52±0.40 a | 30.75±0.27 a | 31.36±0.38 a | ||||||
山嵛酸Behenate | 0.82 | 0.89 | 0.59 | 25.67±0.42 b | 26.69±0.47 ab | 27.43±0.47 a | ||||||
顺-8,11,14-二十碳三烯酸 | 1.21 | 1.26 | 0.82 | 37.98±0.50 a | 37.73±0.27 a | 38.18±0.25 a | ||||||
Cis-8,11,14-eicosatrienoic acid | ||||||||||||
芥酸Erucate | 5.13 | 4.84 | 3.20 | 160.50±4.42 a | 144.72±4.28 a | 148.52±5.95 a | ||||||
1,14,17-顺-二十碳三烯酸 | 1.54 | 1.55 | 1.17 | 48.12±1.38 b | 46.42±0.29 b | 54.13±0.34 a | ||||||
1,14,17-Eicosatrienoate | ||||||||||||
二十三酸Tricosanoate | 0.68 | 0.71 | 0.46 | 21.28±0.28 a | 21.16±0.25 a | 21.31±0.19 a | ||||||
花生四烯酸Arachidonate | 1.85 | 2.18 | 1.47 | 57.96±0.12 b | 65.29±0.08 a | 68.00±0.91 a | ||||||
二十二碳二烯酸Docosadienoate | 1.60 | 1.68 | 1.08 | 50.01±0.30 a | 50.36±0.54 a | 50.27±0.41 a | ||||||
木蜡酸Lignocerate | 1.85 | 1.91 | 1.28 | 57.78±0.84 ab | 57.16±0.33 b | 59.55±0.33 a | ||||||
二十碳五烯酸Eicosapentaenoate | 1.53 | 1.61 | 1.04 | 47.86±0.49 a | 48.02±0.28 a | 48.06±0.37 a | ||||||
二十四碳烯酸Nervonate | 1.91 | 2.00 | 1.29 | 59.65±0.26 a | 59.85±0.47 a | 59.68±0.46 a | ||||||
二十二碳六烯酸Docosahexaenoate | 2.58 | 2.70 | 1.74 | 80.66±0.83 a | 80.86±0.69 a | 80.94±0.77 a |
[1] | CHIANG I Z, HUANG W Y, WU J T. Allelochemicals of Botryococcus braunii (Chlorophyceae)[J]. Journal of Phycology, 2004, 40(3): 474-480. |
[2] | NAKAI S, INOUE Y, HOSOMI M, et al. Growth inhibition of blue-green algae by allelopathic effects of macrophytes[J]. Water Science and Technology, 1999, 39(8): 47-53. |
[3] | NEILEN A D, HAWKER D W, O'BRIEN K R, et al. Phytotoxic effects of terrestrial dissolved organic matter on a freshwater cyanobacteria and green algae species is affected by plant source and DOM chemical composition[J]. Chemosphere, 2017, 184: 969-980. |
[4] | YU S M, LI C, XU C C, et al. Understanding the inhibitory mechanism of antialgal allelochemical flavonoids from genetic variations: photosynthesis, toxin synthesis and nutrient utility[J]. Ecotoxicology and Environmental Safety, 2019, 177: 18-24. |
[5] | HUA Q, LIU Y G, YAN Z L, et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa[J]. Ecotoxicology and Environmental Safety, 2018, 148: 953-959. |
[6] | TAN K T, HUANG Z Q, JI R B, et al. A review of allelopathy on microalgae[J]. Microbiology, 2019, 165(6): 587-592. |
[7] | MOOSAVI A, AFSHARI R T, ASADI A, et al. Allelopathic effects of aqueous extract of leaf stem and root of Sorghum bicolor on seed germination and seedling growth of Vigna radiata L[J]. Notulae Scientia Biologicae, 2011, 3(2): 114-118. |
[8] | SODAEIZADEH H, RAFIEIOLHOSSAINI M, HAVLÍK J, et al. Allelopathic activity of different plant parts of Peganum harmala L. and identification of their growth inhibitors substances[J]. Plant Growth Regulation, 2009, 59(3): 227-236. |
[9] | SUN F, PEI H Y, HU W R, et al. The lysis of Microcystis aeruginosa in AlCl3 coagulation and sedimentation processes[J]. Chemical Engineering Journal, 2012, 193/194: 196-202. |
[10] | GAO J Q, YANG L, ZHONG R, et al. Comparison of nitrogen and phosphorus removal efficiency between two types of baffled vertical flow constructed wetlands planted with Oenanthe javanica[J]. Water Science and Technology, 2020, 81(9): 2023-2032. |
[11] | SUNJEET K, LI G J, HUANG X F, et al. Phenotypic, nutritional, and antioxidant characterization of blanched Oenanthe javanica for preferable Cultivar [J]. Frontiers in Plant Science, 2021, 12: 639639. |
[12] | XUE Z. Allelopathy effects of Oenanthe javanica extracts on Scenedesmus obliquus[J]. Bulletin of Botanical Research, 2011, 31(6): 735-757. |
[13] | KONG Y, PENG Y Z, ZHANG Z, et al. Removal of Microcystis aeruginosa by ultrasound: Inactivation mechanism and release of algal organic matter[J]. Ultrasonics Sonochemistry, 2019, 56: 447-457. |
[14] | SERRÀ A, PIP P, GÓMEZ E, et al. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins[J]. Applied Catalysis B: Environmental, 2020, 268: 118745. |
[15] | GONG H, CHU W, CHEN M J, et al. A systematic study on photocatalysis of antipyrine: catalyst characterization, parameter optimization, reaction mechanism and toxicity evolution to plankton[J]. Water Research, 2017, 112: 167-175. |
[16] | WANG B L, LI Y Y, ZHENG J L, et al. Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa)[J]. Chemosphere, 2020, 254: 126898. |
[17] | TSAI K P, UZUN H, CHEN H, et al. Control wildfire-induced Microcystis aeruginosa blooms by copper sulfate: trade-offs between reducing algal organic matter and promoting disinfection byproduct formation[J]. Water Research, 2019, 158: 227-236. |
[18] | ZHANG D Y, YE Q, ZHANG F X, et al. Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms[J]. Chemosphere, 2019, 218: 138-146. |
[19] | 边归国. 浮水植物化感作用抑制藻类的机理与应用[J]. 水生生物学报, 2012, 36(5): 978-982. |
BIAN G G. Mechanism and application of allelopathy of floating plants to inhibit algae[J]. Acta Hydrobiologica Sinica, 2012, 36(5): 978-982. (in Chinese) | |
[20] | 吴振斌. 大型水生植物对藻类的化感作用[M]. 北京: 科学出版社, 2016: 44-49. |
[21] | 倪利晓, 陈世金, 任高翔, 等. 陆生植物化感作用的抑藻研究进展[J]. 生态环境学报, 2011, 20(S1): 1176-1182. |
NI L X, CHEN S J, REN G X, et al. Advance research on the allelopathy of terrestrial plants in inhibition of algae[J]. Ecology and Environmental Sciences, 2011, 20(S1): 1176-1182. (in Chinese with English abstract) | |
[22] | 周丽, 付子轼, 陈桂发, 等. 陆生植物化感抑制铜绿微囊藻作用效应及机制研究进展[J]. 应用生态学报, 2018, 29(5): 1715-1724. |
ZHOU L, FU Z S, CHEN G F, et al. Research advance in allelopathy effect and mechanism of terrestrial plants in inhibition of Microcystis aeruginosa[J]. Chinese Journal of Applied Ecology, 2018, 29(5): 1715-1724. (in Chinese with English abstract) | |
[23] | PARK M H, HWANG S J, AHN C Y, et al. Screening of seventeen oak extracts for the growth inhibition of the cyanobacterium Microcystis aeruginosa Kützem. Elenkin[J]. Bulletin of Environmental Contamination and Toxicology, 2006, 77(1): 9-14. |
[24] | NAKAI S, INOUE Y, HOSOMI M. Algal growth inhibition effects and inducement modes by plant-producing phenols[J]. Water Research, 2001, 35(7): 1855-1859. |
[25] | ZHU J Y, LIU B Y, WANG J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion[J]. Aquatic Toxicology, 2010, 98(2): 196-203. |
[26] | ZHANG S H, ZHANG S Y, LI G. Acorus calamus root extracts to control harmful cyanobacteria blooms[J]. Ecological Engineering, 2016, 94: 95-101. |
[27] | QIAN Y P, XU N, LIU J A, et al. Inhibitory effects of Pontederia cordata on the growth of Microcystis aeruginosa[J]. Water Science and Technology, 2018, 2017(1): 99-107. |
[28] | SÜTFELD R, PETEREIT F, NAHRSTEDT A. Resorcinol in exudates of Nuphar lutea[J]. Journal of Chemical Ecology, 1996, 22(12): 2221-2231. |
[29] | ZHU X Q, DAO G H, TAO Y, et al. A review on control of harmful algal blooms by plant-derived allelochemicals[J]. Journal of Hazardous Materials, 2021, 401: 123403. |
[30] | 胡利静, 童桂香, 黄光华, 等. 水杨酸对铜绿微囊藻的化感抑制作用[J]. 南方农业学报, 2017, 48(1): 169-173. |
HU L J, TONG G X, HUANG G H, et al. Allelopathy inhibition of salicylic acid on Microcystis aeruginosa[J]. Journal of Southern Agriculture, 2017, 48(1): 169-173. (in Chinese with English abstract) | |
[31] | 郭亚丽, 傅海燕, 黄国和, 等. 阿魏酸和香豆素对铜绿微囊藻的化感作用[J]. 环境科学, 2013, 34(4): 1492-1497. |
GUO Y L, FU H Y, HUANG G H, et al. Allelopathy effects of ferulic acid and coumarin on Microcystis aeruginosa[J]. Environmental Science, 2013, 34(4): 1492-1497. (in Chinese with English abstract) | |
[32] | HUANG H M, XIAO X, GHADOUANI A, et al. Effects of natural flavonoids on photosynthetic activity and cell integrity in Microcystis aeruginosa[J]. Toxins, 2015, 7(1): 66-80. |
[33] | 张庭廷, 郑春艳, 何梅, 等. 脂肪酸类物质的抑藻效应及其构效关系[J]. 中国环境科学, 2009, 29(3): 274-279. |
ZHANG T T, ZHENG C Y, HE M, et al. Inhibition on algae of fatty acids and the structure-effect relationship[J]. China Environmental Science, 2009, 29(3): 274-279. (in Chinese with English abstract) | |
[34] | 胡陈艳, 葛芳杰, 张胜花, 等. 马来眼子菜体内抑藻物质分离及常见脂肪酸抑藻效应[J]. 湖泊科学, 2010, 22(4): 569-576. |
HU C Y, GE F J, ZHANG S H, et al. Isolation of antialgal compounds from Potamogeton malaianus and algal inhibitory effects of common fatty acids[J]. Journal of Lake Sciences, 2010, 22(4): 569-576. (in Chinese with English abstract) | |
[35] | ZUO S P, ZHOU S B, YE L T, et al. Synergistic and antagonistic interactions among five allelochemicals with antialgal effects on bloom-forming Microcystis aeruginosa[J]. Ecological Engineering, 2016, 97: 486-492. |
[36] | MULDERIJ G, VAN DONK E, ROELOFS J G M. Differential sensitivity of green algae to allelopathic substances from Chara[J]. Hydrobiologia, 2003, 491(1/2/3): 261-271. |
[37] | HOOTSMANS M J M, VERMAAT J E. Macrophytes, a key to understanding changes caused by eutrophication in shallow freshwater ecosystems[D]. Wageningen: Wageningen University and Research Center, 1991. |
[38] | 徐贵华, 关荣发, 叶兴乾, 等. 不同成熟期蜜桔中酚酸的组成与分布[J]. 食品科学, 2008, 29(2): 137-141. |
XU G H, GUAN R F, YE X Q, et al. Composition and distribution of phenolic acids in Satsuma mandarin (Citrus unshiu Marc.) during maturity[J]. Food Science, 2008, 29(2): 137-141. (in Chinese with English abstract) | |
[39] | 胡洪营, 门玉洁, 李锋民. 植物化感作用抑制藻类生长的研究进展[J]. 生态环境, 2006, 15(1): 153-157. |
HU H Y, MEN Y J, LI F M. Research progress on phyto-allelopathic algae control[J]. Ecology and Environment, 2006, 15(1): 153-157. (in Chinese with English abstract) | |
[40] | 王方园, 杨倩, 王娟, 等. 砷和汞对水芹毒性影响及其吸收富集效应[J]. 浙江师范大学学报(自然科学版), 2020, 43(4): 430-437. |
WANG F Y, YANG Q, WANG J, et al. Toxic effects of arsenic and mercury on Oenanthe javanica and their absorption and enrichment effects[J]. Journal of Zhejiang Normal University (Natural Sciences), 2020, 43(4): 430-437. (in Chinese) |
[1] | LIU Guangrui, ZONG Yuan, LI Yun, CAO Dong, LIU Baolong, BAO Xuemei, LI Jianmin. Cloning and functional research of MYB transcription factor AsMYB44 from Angelica sinensis [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1253-1264. |
[2] | SONG Biqing, YANG Xiaodong, ZHENG Yunye, WANG Guoping, XU Shengchun, ZHAO Yan, ZHAO Shanshan, MA Yuxuan, LI Sujuan. Evaluation of physicochemical properties, fatty acids and volatile components of different tobacco seed oils [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1152-1161. |
[3] | LI Yanle, ZHONG Huairong, XUAN Ning, ZHANG Yan, CHEN Gao, JI Xiang. Effects of over expression of phosphopantetheinyl transferases gene on fatty acid synthesis in Synechocystis sp. PCC6803 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1316-1325. |
[4] | LI Wenlue, LUO Xiahong, LIU Tingting, JIN Guanrong, GE Yaying, CHEN Changli, AN Xia. Determination and comparative analysis of physicochemical properties of different sunflower seeds [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 671-677. |
[5] | LIN Yuqing, LU Shengmin, ZHOU Wanyi, XING Jianrong, YANG Ying. Preliminary investigation about structure and probiotic properties of polysaccharides from Dendrobium officinale leaves [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2504-2511. |
[6] | TANG Jianing, WANG Yongxia, LIU Jinsong, ZENG Xinfu, YANG Caimei. Bacteriostatic effect of medium-chain fatty acids and their esters on pathogenic bacteria [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1611-1616. |
[7] | LU Xiaoyuan, ZHONG Huairong, XIA Zhijie, CAO Yuelei, CHEN Gao, DAI Meixue. Effects of overexpression of acyl carrier protein gene in Synechocystis on fatty acids synthesis [J]. , 2020, 32(7): 1253-1262. |
[8] | LI Meilin, CHEN Yutiao, HONG Xiaofu, QIAO Yuying, WANG Qingxia, CHEN Xijing, SHEN Alin, YU Man. Effects of nitrogen management on soil microbial community structure in paddy fields [J]. , 2020, 32(2): 308-316. |
[9] | LIU Yongtao, DONG Jing, XIA Jingjin, CAO Cuiyu, XU Ning, YANG Qiuhong, AI Xiaohui. Effect and evaluation of different feed on texture properties and nutritional quality of Procambarus clarkia cultured in rice fields [J]. , 2019, 31(12): 1996-2004. |
[10] | HU Xinyi, FU Qinglin, LIU Chen, DING Nengfei, LIN Yicheng. Effects of straw-returning and tillage depth on soil properties in plough layer of paddy soil [J]. , 2018, 30(7): 1202-1210. |
[11] | JIANG Cong1,ZHANG Qing2,YAO Zhonghua2,XU Zhigang3,LOU Binggan1,*. Isolation and identification of the pathogen of black plum canker#br# [J]. , 2014, 26(4): 971-. |
[12] | LI Chunhui;MENG Xiaoqin;LIU Botao;CHEN Guoshun;WU Run;PU Wanxia;*. Effects of active egg white protein on colonic short chain fatty acid of weaned piglets [J]. , 2014, 26(2): 0-297302. |
[13] | WANG Bing;ZHU Lihong;ZHAO Yuhua;WANG Xin;SUN Dongchang;*. Efficiency biodiesel production by genetic engineered strain using straw hydrolysate [J]. , 2014, 26(2): 0-403409. |
[14] | YU You-ping;CAI Xin-zhong;ZHU Xiao-xiang;*. Comparative analysis of microbial community structures in soils from rice-upland crop rotation fields by PLFA profile technique [J]. , 2013, 25(5): 0-1061. |
[15] | YANG Tian-tian;DU Hai-rong;CHEN Gang;*;DENG Peng;ZHEN Wei-wei. Current research on plant allelopathy and its application in agricultural production [J]. , 2012, 24(2): 0-348. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||