Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (6): 1316-1325.DOI: 10.3969/j.issn.1004-1524.2022.06.22
• Biosystms Engineening • Previous Articles Next Articles
LI Yanle1(), ZHONG Huairong2, XUAN Ning2, ZHANG Yan2, CHEN Gao2,*(
), JI Xiang1,*(
)
Received:
2021-01-29
Online:
2022-06-25
Published:
2022-06-30
Contact:
CHEN Gao,JI Xiang
CLC Number:
LI Yanle, ZHONG Huairong, XUAN Ning, ZHANG Yan, CHEN Gao, JI Xiang. Effects of over expression of phosphopantetheinyl transferases gene on fatty acid synthesis in Synechocystis sp. PCC6803[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1316-1325.
引物 Primers | 序列 Primer sequences(5'→3') |
---|---|
Pcpc560-F | AATGTCGACACCTGTAGAGAAGAGTCCC |
Pcpc560-R | TGAATTAATCTCCTACTTGAC |
slr0646U-F | CGCCTCGAGACGGCAATTGGTTATCACT |
slr0646U-R | CCAGTCGACACGCTGCAATTTGACCTAT |
slr0646D-F | ATACCGCGGAAACAACGCCGCTGACGAA |
slr0646D-R | GGCGAGCTCTACAAGAAGCAGAGGAGTT |
slr0495-F | AGTAGGAGATTAATTCAATGCTCCCCCAGCCCCAAA |
slr0495-Flag-R | GGCGAATTCCTACTTATCGTCGTCATCCTTGTAATC |
slr0495-Flag-RT-F | GATACAAACCATTGGCGA |
slr0495-Flag-RT-R | TTGGAACTAAGTAACGGG |
Table 1 Primer used in this study
引物 Primers | 序列 Primer sequences(5'→3') |
---|---|
Pcpc560-F | AATGTCGACACCTGTAGAGAAGAGTCCC |
Pcpc560-R | TGAATTAATCTCCTACTTGAC |
slr0646U-F | CGCCTCGAGACGGCAATTGGTTATCACT |
slr0646U-R | CCAGTCGACACGCTGCAATTTGACCTAT |
slr0646D-F | ATACCGCGGAAACAACGCCGCTGACGAA |
slr0646D-R | GGCGAGCTCTACAAGAAGCAGAGGAGTT |
slr0495-F | AGTAGGAGATTAATTCAATGCTCCCCCAGCCCCAAA |
slr0495-Flag-R | GGCGAATTCCTACTTATCGTCGTCATCCTTGTAATC |
slr0495-Flag-RT-F | GATACAAACCATTGGCGA |
slr0495-Flag-RT-R | TTGGAACTAAGTAACGGG |
Fig. 2 Construction process and detection of homologous recombination platform slr0646UD A, Agorase gel electrophoresis of genome from Synechocystis sp. PCC6803; B, The identification of slr0646UD platform in DNA level; C, Construction map of slr0646UD homologous recombination platform; WT, Synechocystis sp. PCC6803.
Fig. 3 The identification of slr0495(+) mutant in DNA and RNA level A, Construction of homologous recombinant plasmid slr0495(+); B, PCR amplification of mutant slr0495 (+); C, The identification of slr0495(+) mutant in RNA level; WT, Synechocystis sp. PCC6803; M, Mutant strain of slr0495(+).
Fig. 4 Effects of temperature and nitrogen concentration on growth rate of algae A, Growth curves at 30 ℃, 50 μmol·m-2·s-1 and different nitrogen concentrations; B, Growth curves at 20 ℃,50 μmol·m-2·s-1 and different nitrogen concentrations; WT, Synechocystis sp. PCC6803; M, The mutant strain of slr0495(+).
Fig. 5 Content of chlorophyll a A, Chlorophyll a contents under different nitrogen concentrations at 30 ℃, 50 μmol·m-2·s-1; B, Chlorophyll a content under different nitrogen concentrations at 20 ℃, 50 μmol·m-2·s-1; WT, Synechocystis sp. PCC6803; M, Mutant strain of slr0495(+).
Fig. 6 Content of carotenoids A, Carotenoid contents under different nitrogen concentrations at 30 ℃, 50 μmol·m-2·s-1; B, Carotenoid contents under different nitrogen concentrations at 20 ℃, 50 μmol·m-2·s-1.
脂肪酸Fatty acid | WT 30 ℃ 100% N 50% N | M 30 ℃ 100% N 50% N | WT 20 ℃ 100% N 50% N | M 20 ℃ 100% N 50% N | ||||
---|---|---|---|---|---|---|---|---|
TFA | 13.42 ± 0.63 | 15.25 ± 0.47 | 19.69 ± 1.02 | 22.43 ± 1.17 | 24.52 ±1.12 | 29.44 ± 1.83 | 22.31 ± 1.47 | 30.44 ± 1.75 |
C11:0 | 6.59 ± 0.27 | 6.96 ± 0.32 | 3.27 ± 0.17 | 3.85 ± 0.23 | 6.79 ± 0.43 | 5.96 ± 0.21 | 5.66 ± 0.32 | 6.48 ± 0.49 |
C12:0 | 1.06 ± 0.09 | 1.24 ± 0.12 | 1.31 ± 0.16 | 1.43 ± 0.11 | 1.53 ± 0.07 | 1.57 ± 0.13 | 1.62 ± 0.22 | 1.89 ± 0.16 |
C16:0 | 6.44 ± 0.32 | 6.75 ± 0.27 | 8.07 ± 0.23 | 8.97 ± 0.12 | 7.94 ± 0.65 | 8.41 ± 0.21 | 9.45 ± 0.39 | 12.17 ± 0.63 |
C18:0 | 1.19 ± 0.07 | 1.24 ± 0.23 | 1.35 ± 0.03 | 1.41± 0.07 | 1.54 ± 0.13 | 1.59 ± 0.11 | 1.71 ± 0.15 | 2.25± 0.07 |
C18:3 | 3.02 ± 0.27 | 3.27 ± 0.21 | 3.61 ± 0.15 | 3.93 ± 0.23 | 0.37 ± 0.07 | 0.56 ± 0.07 | 4.01 ± 0.12 | 4.34 ± 0.21 |
Table 2 Fatty acid contents of wild type and slr0495(+) mutants under different conditions mg·g-1
脂肪酸Fatty acid | WT 30 ℃ 100% N 50% N | M 30 ℃ 100% N 50% N | WT 20 ℃ 100% N 50% N | M 20 ℃ 100% N 50% N | ||||
---|---|---|---|---|---|---|---|---|
TFA | 13.42 ± 0.63 | 15.25 ± 0.47 | 19.69 ± 1.02 | 22.43 ± 1.17 | 24.52 ±1.12 | 29.44 ± 1.83 | 22.31 ± 1.47 | 30.44 ± 1.75 |
C11:0 | 6.59 ± 0.27 | 6.96 ± 0.32 | 3.27 ± 0.17 | 3.85 ± 0.23 | 6.79 ± 0.43 | 5.96 ± 0.21 | 5.66 ± 0.32 | 6.48 ± 0.49 |
C12:0 | 1.06 ± 0.09 | 1.24 ± 0.12 | 1.31 ± 0.16 | 1.43 ± 0.11 | 1.53 ± 0.07 | 1.57 ± 0.13 | 1.62 ± 0.22 | 1.89 ± 0.16 |
C16:0 | 6.44 ± 0.32 | 6.75 ± 0.27 | 8.07 ± 0.23 | 8.97 ± 0.12 | 7.94 ± 0.65 | 8.41 ± 0.21 | 9.45 ± 0.39 | 12.17 ± 0.63 |
C18:0 | 1.19 ± 0.07 | 1.24 ± 0.23 | 1.35 ± 0.03 | 1.41± 0.07 | 1.54 ± 0.13 | 1.59 ± 0.11 | 1.71 ± 0.15 | 2.25± 0.07 |
C18:3 | 3.02 ± 0.27 | 3.27 ± 0.21 | 3.61 ± 0.15 | 3.93 ± 0.23 | 0.37 ± 0.07 | 0.56 ± 0.07 | 4.01 ± 0.12 | 4.34 ± 0.21 |
[1] |
QIU Y J, FREAR C, CHEN S L, et al. Accumulation of long-chain fatty acids from Nannochloropsis salina enhanced by breaking microalgae cell wall under alkaline digestion[J]. Renewable Energy, 2020, 149: 691-700.
DOI URL |
[2] |
MATHIMANI T, SENTHIL KUMAR T, CHANDRASEKAR M, et al. Assessment of fuel properties, engine performance and emission characteristics of outdoor grown marine Chlorella vulgaris BDUG 91771 biodiesel[J]. Renewable Energy, 2017, 105: 637-646.
DOI URL |
[3] | CARDOZO K H M, GUARATINI T, BARROS M P, et al. Metabolites from algae with economical impact[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2007, 146(1/2): 60-78. |
[4] |
YARNOLD J, KARAN H K, OEY M, et al. Microalgal aquafeeds as part of a circular bioeconomy[J]. Trends in Plant Science, 2019, 24(10): 959-970.
DOI URL |
[5] |
SOLOVCHENKO A E. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses[J]. Russian Journal of Plant Physiology, 2012, 59(2): 167-176.
DOI URL |
[6] |
BROWN M R, JEFFREY S W, VOLKMAN J K, et al. Nutritional properties of microalgae for mariculture[J]. Aquaculture, 1997, 151(1/2/3/4): 315-331.
DOI URL |
[7] |
SÁ M, FERRER-LEDO N, WIJFFELS R, et al. Monitoring of eicosapentaenoic acid (EPA) production in the microalgae Nannochloropsis oceanica[J]. Algal Research, 2020, 45: 101766.
DOI URL |
[8] |
JIANG H M, GAO K S. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (bacillariophyceae)1[J]. Journal of Phycology, 2004, 40(4): 651-654.
DOI URL |
[9] |
LEU S, BOUSSIBA S. Advances in the production of high-value products by microalgae[J]. Industrial Biotechnology, 2014, 10(3): 169-183.
DOI URL |
[10] |
LIU Y M, CUI Y L, CHEN J, et al. Metabolic engineering of Synechocystis sp. PCC6803 to produce astaxanthin[J]. Algal Research, 2019, 44: 101679.
DOI URL |
[11] |
BELD J, SONNENSCHEIN E C, VICKERY C R, et al. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life[J]. Natural Product Reports, 2014, 31(1): 61-108.
DOI URL |
[12] |
LAMBALOT R H, GEHRING A M, FLUGEL R S, et al. A new enzyme superfamily: the phosphopantetheinyl transferases[J]. Chemistry & Biology, 1996, 3(11): 923-936.
DOI URL |
[13] | 王月月. 工业链霉菌中磷酸泛酰巯基乙胺基转移酶的研究及应用[D]. 杭州: 浙江大学, 2015. |
WANG Y Y. Study and application of phosphopantetheinvl transferases from industrial Streptomvces[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract) | |
[14] | 路晓媛, 钟怀荣, 夏志洁, 等. 集胞藻酰基载体蛋白基因过量表达对脂肪酸合成的影响[J]. 浙江农业学报, 2020, 32(7): 1253-1262. |
LU X Y, ZHONG H R, XIA Z J, et al. Effects of overexpression of acyl carrier protein gene in Synechocystis on fatty acids synthesis[J]. Acta Agriculturae Zhejiangensis, 2020, 32(7): 1253-1262. (in Chinese with English abstract) | |
[15] |
STANIER R Y, KUNISAWA R, MANDEL M, et al. Purification and properties of unicellular blue-green algae (order Chroococcales)[J]. Bacteriological Reviews, 1971, 35(2): 171-205.
DOI URL |
[16] |
CHEN G, QU S J, WANG Q, et al. Transgenic expression of delta-6 and delta-15 fatty acid desaturases enhances Omega-3 polyunsaturated fatty acid accumulation in Synechocystis sp. PCC6803[J]. Biotechnology for Biofuels, 2014, 7(1): 32.
DOI URL |
[17] |
CHEN G, CHEN J, HE Q F, et al. Functional expression of the Arachis hypogaea L. acyl-ACP thioesterases AhFatA and AhFatB enhances fatty acid production in Synechocystis sp. PCC6803[J]. Energies, 2017, 10(12): 2093.
DOI URL |
[18] | XUE Y, ZHANG Y, CHENG D, et al. Genetically engineeringSynechocystissp. Pasteur Culture Collection 6803 for the sustainable production of the plant secondary metabolitep-coumaric acid[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(26): 9449-9454. |
[19] |
SUSHCHIK N N, KALACHEVA G S, ZHILA N O, et al. A temperature dependence of the intra- and extracellular fatty-acid composition of green algae and cyanobacterium[J]. Russian Journal of Plant Physiology, 2003, 50(3): 374-380.
DOI URL |
[20] |
ZHANG M, BARG R, YIN M G, et al. Modulated fatty acid desaturation via overexpression of two distinct Omega-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants[J]. The Plant Journal, 2005, 44(3): 361-371.
DOI URL |
[21] |
LI Y, XU X, DIETRICH M, et al. Identification and functional expression of a Δ9 fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 56(2/3): 96-101.
DOI URL |
[22] |
MILLER R, WU G X, DESHPANDE R R, et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism[J]. Plant Physiology, 2010, 154(4): 1737-1752.
DOI URL |
[23] |
YANG Z K, NIU Y F, MA Y H, et al. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation[J]. Biotechnology for Biofuels, 2013, 6(1): 1-14.
DOI URL |
[24] |
CHATTOPADHYAY M K. Mechanism of bacterial adaptation to low temperature[J]. Journal of Biosciences, 2006, 31(1): 157-165.
DOI URL |
[25] | 庞玥, 张树林, 毕相东. 蓝藻光合膜蛋白复合体结构与功能研究进展[J]. 天津农学院学报, 2013, 20(3): 45-51. |
PANG Y, ZHANG S L, BI X D. Progress of structure and function of photosynthetic membrane protein complexes in cyanobacteria[J]. Journal of Tianjin Agricultural University, 2013, 20(3): 45-51. (in Chinese with English abstract) |
[1] | LU Xiaoyuan, ZHONG Huairong, XIA Zhijie, CAO Yuelei, CHEN Gao, DAI Meixue. Effects of overexpression of acyl carrier protein gene in Synechocystis on fatty acids synthesis [J]. , 2020, 32(7): 1253-1262. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 536
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 372
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||