Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (6): 1306-1315.DOI: 10.3969/j.issn.1004-1524.2022.06.21
• Biosystms Engineening • Previous Articles Next Articles
CHEN Daohuai1(
), WANG Hangjun2,*(
)
Received:2021-07-03
Online:2022-06-25
Published:2022-06-30
Contact:
WANG Hangjun
CLC Number:
CHEN Daohuai, WANG Hangjun. Detection of forest pests based on improved YOLOv4[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1306-1315.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.06.21
| 害虫种类 Pest species | 害虫尺寸 Pest size | 样本数量 Sample quantity | 害虫种类 Pest species | 害虫尺寸 Pest size | 样本数量 Sample quantity |
|---|---|---|---|---|---|
| 美苔蛾Miltochrista miniata | 小Small | 1 060 | 斜矛丽金龟Callistethus plagiicollis | 中Medium | 1 057 |
| 黄土苔蛾Eilema nigripoda | 小Small | 1 067 | 铜绿丽金龟Anomala corpulenta Motschulsky | 大Big | 1 289 |
| 条纹小斑蛾Thyrassia penangae | 小Small | 1 057 | 毛黄鳃金龟Holotrichia trichophora | 大Big | 1 156 |
| 突背斑红蝽Physopelta gutta | 小Small | 1 189 | 茶斑蛾Eterusia aedea | 大Big | 1 081 |
| 八点灰灯蛾Creatonotos transiens | 中Medium | 1 060 | 蚱蜢Locusta migratoria | 大Big | 903 |
Table 1 Information of pest samples in image dataset
| 害虫种类 Pest species | 害虫尺寸 Pest size | 样本数量 Sample quantity | 害虫种类 Pest species | 害虫尺寸 Pest size | 样本数量 Sample quantity |
|---|---|---|---|---|---|
| 美苔蛾Miltochrista miniata | 小Small | 1 060 | 斜矛丽金龟Callistethus plagiicollis | 中Medium | 1 057 |
| 黄土苔蛾Eilema nigripoda | 小Small | 1 067 | 铜绿丽金龟Anomala corpulenta Motschulsky | 大Big | 1 289 |
| 条纹小斑蛾Thyrassia penangae | 小Small | 1 057 | 毛黄鳃金龟Holotrichia trichophora | 大Big | 1 156 |
| 突背斑红蝽Physopelta gutta | 小Small | 1 189 | 茶斑蛾Eterusia aedea | 大Big | 1 081 |
| 八点灰灯蛾Creatonotos transiens | 中Medium | 1 060 | 蚱蜢Locusta migratoria | 大Big | 903 |
| 模型Model | 特征图Feature map |
|---|---|
| YOLOv4 | 13×13、26×26、52×52 |
| Improved YOLOv4-1 | 13×13、26×26、52×52、104×104 |
| Improved YOLOv4-2 | 26×26、52×52、104×104 |
| Improved YOLOv4-3 | 52×52、104×104 |
| Improved YOLOv4-4 | 104×104 |
Table 2 Structure comparison of different models
| 模型Model | 特征图Feature map |
|---|---|
| YOLOv4 | 13×13、26×26、52×52 |
| Improved YOLOv4-1 | 13×13、26×26、52×52、104×104 |
| Improved YOLOv4-2 | 26×26、52×52、104×104 |
| Improved YOLOv4-3 | 52×52、104×104 |
| Improved YOLOv4-4 | 104×104 |
| 模型 Model | MAP/% | FPS | FLOPs/B | MP/MB |
|---|---|---|---|---|
| YOLOv3 | 91.9 | 41 | 65 | 240 |
| YOLOv4 | 94.8 | 36 | 59 | 250 |
| Improved YOLOv4-1 | 96.1 | 30 | 69 | 254 |
| Improved YOLOv4-2 | 96.3 | 33 | 64 | 187 |
| Improved YOLOv4-3 | 96.0 | 38 | 58 | 171 |
| Improved YOLOv4-4 | 96.4 | 40 | 52 | 167 |
Table 3 Comparison of performance of different models
| 模型 Model | MAP/% | FPS | FLOPs/B | MP/MB |
|---|---|---|---|---|
| YOLOv3 | 91.9 | 41 | 65 | 240 |
| YOLOv4 | 94.8 | 36 | 59 | 250 |
| Improved YOLOv4-1 | 96.1 | 30 | 69 | 254 |
| Improved YOLOv4-2 | 96.3 | 33 | 64 | 187 |
| Improved YOLOv4-3 | 96.0 | 38 | 58 | 171 |
| Improved YOLOv4-4 | 96.4 | 40 | 52 | 167 |
| 编号 Number | 害虫尺寸 Pest size | YOLOv3/% | YOLOv4/ % | Improved YOLOv4-4/ % |
|---|---|---|---|---|
| 1 | 小Small | 89.2 | 93.1 | 96.0 |
| 2 | 小Small | 91.4 | 91.7 | 94.9 |
| 3 | 小Small | 91.5 | 94.4 | 96.0 |
| 4 | 小Small | 92.8 | 93.0 | 94.4 |
| 5 | 中Medium | 97.1 | 98.3 | 98.0 |
| 6 | 中Medium | 96.1 | 97.7 | 96.9 |
| 7 | 大Big | 98.3 | 99.1 | 99.1 |
| 8 | 大Big | 97.0 | 96.9 | 97.7 |
| 9 | 大Big | 98.5 | 99.0 | 99.0 |
| 10 | 大Big | 95.8 | 98.9 | 97.5 |
| 11 | — | 62.5 | 80.9 | 90.9 |
| MAP | — | 91.9 | 94.8 | 96.4 |
Table 4 Comparison of recognition accuracy of different models
| 编号 Number | 害虫尺寸 Pest size | YOLOv3/% | YOLOv4/ % | Improved YOLOv4-4/ % |
|---|---|---|---|---|
| 1 | 小Small | 89.2 | 93.1 | 96.0 |
| 2 | 小Small | 91.4 | 91.7 | 94.9 |
| 3 | 小Small | 91.5 | 94.4 | 96.0 |
| 4 | 小Small | 92.8 | 93.0 | 94.4 |
| 5 | 中Medium | 97.1 | 98.3 | 98.0 |
| 6 | 中Medium | 96.1 | 97.7 | 96.9 |
| 7 | 大Big | 98.3 | 99.1 | 99.1 |
| 8 | 大Big | 97.0 | 96.9 | 97.7 |
| 9 | 大Big | 98.5 | 99.0 | 99.0 |
| 10 | 大Big | 95.8 | 98.9 | 97.5 |
| 11 | — | 62.5 | 80.9 | 90.9 |
| MAP | — | 91.9 | 94.8 | 96.4 |
| 编号 Number | 害虫尺寸 Pest size | 实际个数 Actual number | YOLOv3 | YOLOv4 | Improved YOLOv4-4 |
|---|---|---|---|---|---|
| 1 | 小Small | 4 | 1 | 2 | 3 |
| 2 | 小Small | 6 | 3 | 4 | 5 |
| 3 | 小Small | 6 | 3 | 4 | 4 |
| 4 | 小Small | 5 | 3 | 4 | 4 |
| 5 | 中Medium | 6 | 5 | 5 | 5 |
| 6 | 中Medium | 5 | 4 | 4 | 4 |
| 7 | 大Big | 5 | 4 | 5 | 5 |
| 8 | 大Big | 6 | 6 | 6 | 6 |
| 9 | 大Big | 6 | 5 | 6 | 6 |
| 10 | 大Big | 4 | 3 | 3 | 4 |
| 11 | — | 3 | 1 | 1 | 1 |
| 合计Total | — | 56 | 38 | 44 | 47 |
Table 5 Comparison of counting results of different models
| 编号 Number | 害虫尺寸 Pest size | 实际个数 Actual number | YOLOv3 | YOLOv4 | Improved YOLOv4-4 |
|---|---|---|---|---|---|
| 1 | 小Small | 4 | 1 | 2 | 3 |
| 2 | 小Small | 6 | 3 | 4 | 5 |
| 3 | 小Small | 6 | 3 | 4 | 4 |
| 4 | 小Small | 5 | 3 | 4 | 4 |
| 5 | 中Medium | 6 | 5 | 5 | 5 |
| 6 | 中Medium | 5 | 4 | 4 | 4 |
| 7 | 大Big | 5 | 4 | 5 | 5 |
| 8 | 大Big | 6 | 6 | 6 | 6 |
| 9 | 大Big | 6 | 5 | 6 | 6 |
| 10 | 大Big | 4 | 3 | 3 | 4 |
| 11 | — | 3 | 1 | 1 | 1 |
| 合计Total | — | 56 | 38 | 44 | 47 |
| [1] | 顾晓丽, 潘洁, 张衡, 等. 基于物联网架构的我国森林病虫害监测研究进展[J]. 世界林业研究, 2015, 28(2): 48-53. |
| GU X L, PAN J, ZHANG H, et al. Review of forest diseases and pests monitoring research in China based on Internet of Things framework[J]. World Forestry Research, 2015, 28(2): 48-53. (in Chinese with English abstract) | |
| [2] | 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317. |
| JIA S P, GAO H J, HANG X. Research progress on image recognition technology of crop pests and diseases based on deep learning[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317. (in Chinese with English abstract) | |
| [3] | 邱道尹, 张红涛, 刘新宇, 等. 基于机器视觉的大田害虫检测系统[J]. 农业机械学报, 2007, 38(1): 120-122. |
| QIU D Y, ZHANG H T, LIU X Y, et al. Design of detection system for agriculture field pests based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(1): 120-122. (in Chinese with English abstract) | |
| [4] |
WEN C L, GUYER D. Image-based orchard insect automated identification and classification method[J]. Computers and Electronics in Agriculture, 2012, 89: 110-115.
DOI URL |
| [5] |
LIU T, CHEN W, WU W, et al. Detection of aphids in wheat fields using a computer vision technique[J]. Biosystems Engineering, 2016, 141: 82-93.
DOI URL |
| [6] | 朱莉, 罗靖, 徐胜勇, 等. 基于颜色特征的油菜害虫机器视觉诊断研究[J]. 农机化研究, 2016, 38(6): 55-58. |
| ZHU L, LUO J, XU S Y, et al. Machine vision recognition of rapeseed pests based on color feature[J]. Journal of Agricultural Mechanization Research, 2016, 38(6): 55-58. (in Chinese with English abstract) | |
| [7] | 李文勇, 李明, 陈梅香, 等. 基于机器视觉的作物多姿态害虫特征提取与分类方法[J]. 农业工程学报, 2014, 30(14): 154-162. |
| LI W Y, LI M, CHEN M X, et al. Feature extraction and classification method of multi-pose pests using machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(14): 154-162. (in Chinese with English abstract) | |
| [8] | 张睿珂, 陈梅香, 李明, 等. 基于机器视觉的蛾类三维姿态中前翅间夹角计算方法[J]. 林业科学, 2017, 53(11): 120-130. |
| ZHANG R K, CHEN M X, LI M, et al. Method of extracting forewings angle of 3D pose for the moth based on machine vision[J]. Scientia Silvae Sinicae, 2017, 53(11): 120-130. (in Chinese with English abstract) | |
| [9] | 田冉, 陈梅香, 董大明, 等. 红外传感器与机器视觉融合的果树害虫识别及计数方法[J]. 农业工程学报, 2016, 32(20): 195-201. |
| TIAN R, CHEN M X, DONG D M, et al. Identification and counting method of orchard pests based on fusion method of infrared sensor and machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 195-201. (in Chinese with English abstract) | |
| [10] | 肖德琴, 张玉康, 范梅红, 等. 基于视觉感知的蔬菜害虫诱捕计数算法[J]. 农业机械学报, 2018, 49(3): 51-58. |
| XIAO D Q, ZHANG Y K, FAN M H, et al. Vegetable pest counting algorithm based on visual perception[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 51-58. (in Chinese with English abstract) | |
| [11] | 周焱, 刘文萍, 骆有庆, 等. 基于深度学习的小目标受灾树木检测方法[J]. 林业科学, 2021, 57(3): 98-107. |
| ZHOU Y, LIU W P, LUO Y Q, et al. Small object detection for infected trees based on the deep learning method[J]. Scientia Silvae Sinicae, 2021, 57(3): 98-107. (in Chinese with English abstract) | |
| [12] | 杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别[J]. 农业工程学报, 2017, 33(6): 156-162. |
| YANG G G, BAO Y D, LIU Z Y. Localization and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(6): 156-162. (in Chinese with English abstract) | |
| [13] | 武英洁, 房世波, Piotr Chudzik, 等. 基于Faster R-CNN的野外环境中蝗虫快速识别[J]. 气象与环境学报, 2020, 36(6): 137-143. |
| WU Y J, FANG S B, CHUDZIK P, et al. Rapid identification of locust on fields based on Faster R-CNN[J]. Journal of Meteorology and Environment, 2020, 36(6): 137-143. (in Chinese) | |
| [14] | 张博, 张苗辉, 陈运忠. 基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J]. 农业工程学报, 2019, 35(19): 209-215. |
| ZHANG B, ZHANG M H, CHEN Y Z. Crop pest identification based on spatial pyramid pooling and deep convolution neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(19): 209-215. (in Chinese with English abstract) | |
| [15] | 李衡霞, 龙陈锋, 曾蒙, 等. 一种基于深度卷积神经网络的油菜虫害检测方法[J]. 湖南农业大学学报(自然科学版), 2019, 45(5): 560-564. |
| LI H X, LONG C F, ZENG M, et al. A detecting method for the rape pests based on deep convolutional neural network[J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(5): 560-564. (in Chinese with English abstract) | |
| [16] | 李想. 基于物联网的虫情监测系统[D]. 北京: 北京林业大学, 2019. |
| LI X. The pest monitoring system based on the Internet of Things[D]. Beijing: Beijing Forestry University, 2019. (in Chinese with English abstract) | |
| [17] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 27-30, 2016, Las Vegas, NV, USA: IEEE, 2016: 779-788. |
| [18] | 王金鹏, 高凯, 姜洪喆,等. 基于改进的轻量化卷积神经网络火龙果检测方法(英)[J]. 农业工程学报, 2020, 36(20): 218-225. |
| WANG J P, GAO K, JIANG H Z, et al. Method for detecting dragon fruit based on improved lightweight convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 218-225.(in English) | |
| [19] | 蔡舒平, 孙仲鸣, 刘慧, 等. 基于改进型YOLOv4的果园障碍物实时检测方法[J]. 农业工程学报, 2021, 37(2): 36-43. |
| CAI S P, SUN Z M, LIU H, et al. Real-time detection methodology for obstacles in orchards using improved YOLOv4[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(2): 36-43. (in Chinese with English abstract) | |
| [20] | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA: IEEE, 2018: 8759-8768. |
| [21] | 鞠默然, 罗海波, 王仲博, 等. 改进的YOLO V3算法及其在小目标检测中的应用[J]. 光学学报, 2019, 39(7): 0715004. |
| JU M R, LUO H B, WANG Z B, et al. Improved YOLO V3 algorithm and its application in small target detection[J]. Acta Optica Sinica, 2019, 39(7): 0715004. (in Chinese with English abstract) |
| [1] | LYU Yinchun, DUAN Enze, ZHU Yixing, ZHENG Xia, BAI Zongchun. Real-time detection of overturned meat ducks based on YOLOv8-Swin Transformer model [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1556-1566. |
| [2] | ZHENG Hang, FENG Haodong, XUE Xianglei, YE Yunxiang, YU Jianlin, YU Guohong. Study on navigation line extraction algorithm for leaf vegetable ridges based on instance segmentations [J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 701-711. |
| [3] | CHENG Jiayu, CHEN Miaojin, LI Tong, SUN Qinan, ZHANG Xiaobin, ZHAO Yiying, ZHU Yihang, GU Qing. Detection of peach trees in unmanned aerial vehicle (UAV) images based on improved Faster-RCNN network [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1909-1919. |
| [4] | PAN Pan, ZHANG Jianhua, ZHENG Xiaoming, ZHOU Guomin, HU Lin, FENG Quan, CHAI Xiujuan. Research progress of deep learning in intelligent identification of disease resistance of crops and their related species [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1993-2012. |
| [5] | BAI Weiwei, ZHAO Xueni, LUO Bin, ZHAO Wei, HUANG Shuo, ZHANG Han. Study of YOLOv5-based germination detection method for wheat seeds [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 445-454. |
| [6] | ZHU Shisong, MA Wanli, ZHAO Lishan, ZHENG Yanmei, ZHENG Xianbo, LU Bibo. Apple leaf image segmentation algorithm based on improved LinkNet [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 202-214. |
| [7] | LI Chao, LI Feng, HUANG Weijia. Fruit variety recognition based on parallel convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2533-2541. |
| [8] | ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. |
| [9] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
| [10] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
| [11] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||