Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (2): 445-454.DOI: 10.3969/j.issn.1004-1524.2023.02.22
• Biosystems Engineering • Previous Articles Next Articles
BAI Weiwei1,2(), ZHAO Xueni1, LUO Bin2, ZHAO Wei1,2, HUANG Shuo3, ZHANG Han2,*(
)
Received:
2020-04-12
Online:
2023-02-25
Published:
2023-03-14
Contact:
ZHANG Han
Fig.1 Schematic diagram of image acquisition device and image acquisition a, Image acquisition device structure; 1, Collection box; 2, Industrial Camera; 3, Strip light; 4, Camera mounts; 5, Germination box; 6, Loading table; 7, Strip light; 8, Wheat seeds; 9, Transferred images; 10, Computer. b, Acquired images.
Fig.2 labelImg mark and germination determination The radicle and germ were depicted in color in order for the germination discrimination criteria to be visually illustrated. The radicle length and germ length were not labeled in the experiment.
时间 Time | 漏识别数 Number of missing identifications | 重复框判别数 Number of duplicate seed markers |
---|---|---|
第1天First day | 0 | 0 |
第2天Second day | 0 | 3 |
第3天Third day | 0 | 2 |
第4天Fourth day | 0 | 1 |
第5天Fifth day | 1 | 0 |
第6天Sixth day | 2 | 0 |
第7天Seventh day | 15 | 1 |
Table 1 Numbers of missing identifications and duplicate seed markers by using YOLOv5x
时间 Time | 漏识别数 Number of missing identifications | 重复框判别数 Number of duplicate seed markers |
---|---|---|
第1天First day | 0 | 0 |
第2天Second day | 0 | 3 |
第3天Third day | 0 | 2 |
第4天Fourth day | 0 | 1 |
第5天Fifth day | 1 | 0 |
第6天Sixth day | 2 | 0 |
第7天Seventh day | 15 | 1 |
判别方式 Model | 重框数 Number of frames | 漏识别数 Number of missing identifications |
---|---|---|
YOLOv5x | 7 | 18 |
DB-YOLOv5 | 0 | 0 |
Table 2 Comparison of the number of errors in the test results of YOLOv5x and DB-YOLOv5
判别方式 Model | 重框数 Number of frames | 漏识别数 Number of missing identifications |
---|---|---|
YOLOv5x | 7 | 18 |
DB-YOLOv5 | 0 | 0 |
方法 Methods | 发芽率 Germination rate/% | 发芽势 Germination potential/% | 发芽指数 Germination index | 平均发芽天数 Average germination days/d |
---|---|---|---|---|
人工检测Manual testing | 98.5 | 86.0 | 74.44 | 2.84 |
YOLOv5x | 92.5 | 85.0 | 69.59 | 2.49 |
DB-YOLOv5 | 98.5 | 85.5 | 72.05 | 2.94 |
Table 3 Comparison of seed germination metrics by manual detection, YOLOv5x and DB-YOLOv5
方法 Methods | 发芽率 Germination rate/% | 发芽势 Germination potential/% | 发芽指数 Germination index | 平均发芽天数 Average germination days/d |
---|---|---|---|---|
人工检测Manual testing | 98.5 | 86.0 | 74.44 | 2.84 |
YOLOv5x | 92.5 | 85.0 | 69.59 | 2.49 |
DB-YOLOv5 | 98.5 | 85.5 | 72.05 | 2.94 |
[1] | 曾雄生. 从“麦饭”到“馒头”: 小麦在中国[J]. 生命世界, 2007(9): 8-13. |
ZENG X S. From “wheat rice” to “steamed bread”-wheat in China[J]. Life World, 2007(9): 8-13. (in Chinese with English abstract) | |
[2] | 刘石. 种子产业的价值空间[J]. 种子世界, 2012(5): 54. |
LIU S. Value space of seed industry[J]. Seed World, 2012(5): 54. (in Chinese with English abstract) | |
[3] | 李彧. 浅谈如何做好种子发芽试验[J]. 种子科技, 2007, 25(4): 45-46. |
LI Y. Talking about how to do well the seed germination test[J]. Seed Science & Technology, 2007, 25(4): 45-46. (in Chinese with English abstract) | |
[4] | 国家技术监督局.农作物种子检验规程发芽试验:GB/T 3543.4—1995[S]. 北京: 中国标准出版社, 1995. |
[5] | 党满意, 孟庆魁, 谷芳, 等. 基于机器视觉的马铃薯晚疫病快速识别[J]. 农业工程学报, 2020, 36(2): 193-200. |
DANG M Y, MENG Q K, GU F, et al. Rapid recognition of potato late blight based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(2): 193-200. (in Chinese with English abstract) | |
[6] | 张晗, 王成, 董宏图, 等. 基于机器视觉的白菜种子精选方法研究[J]. 农机化研究, 2021, 43(12): 31-36. |
ZHANG H, WANG C, DONG H T, et al. Study on the seed selection method of cabbage based on machine vision[J]. Journal of Agricultural Mechanization Research, 2021, 43(12): 31-36. (in Chinese with English abstract) | |
[7] | 袁加红, 朱德泉, 孙丙宇, 等. 基于机器视觉的水稻秧苗图像分割[J]. 浙江农业学报, 2016, 28(6): 1069-1075. |
YUAN J H, ZHU D Q, SUN B Y, et al. Machine vision based segmentation algorithm for rice seedling[J]. Acta Agriculturae Zhejiangensis, 2016, 28(6): 1069-1075. (in Chinese with English abstract) | |
[8] | 李振, 廖同庆, 冯青春, 等. 基于机器视觉的蔬菜种子活力指数检测算法研究及系统实现[J]. 浙江农业学报, 2015, 27(12): 2218-2224. |
LI Z, LIAO T Q, FENG Q C, et al. Study on vegetable seed vigor index detection algorithm and system realization based on machine vision[J]. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2218-2224. (in Chinese with English abstract) | |
[9] | 张帆, 杨勇, 骆少明, 等. 穴盘苗发芽率在线视觉检测研究[J]. 西南大学学报(自然科学版), 2021, 43(10): 84-91. |
ZHANG F, YANG Y, LUO S M, et al. Research of online vision detection for germination of plug seedlings[J]. Journal of Southwest University(Natural Science Edition), 2021, 43(10): 84-91. (in Chinese with English abstract) | |
[10] | 王纪章, 顾容榕, 孙力, 等. 基于Kinect相机的穴盘苗生长过程无损监测方法[J]. 农业机械学报, 2021, 52(2): 227-235. |
WANG J Z, GU R R, SUN L, et al. Non-destructive monitoring of plug seedling growth process based on kinect camera[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2): 227-235. (in Chinese with English abstract) | |
[11] | 金秀, 卢杰, 傅运之, 等. 基于深度卷积神经网络的小麦赤霉病高光谱病症点分类方法[J]. 浙江农业学报, 2019, 31(2): 315-325. |
JIN X, LU J, FU Y Z, et al. A classification method for hyperspectral imaging of Fusarium head blight disease symptom based on deep convolutional neural network[J]. Acta Agriculturae Zhejiangensis, 2019, 31(2): 315-325. (in Chinese with English abstract) | |
[12] | 鲍烈, 王曼韬, 刘江川, 等. 基于卷积神经网络的小麦产量预估方法[J]. 浙江农业学报, 2020, 32(12): 2244-2252. |
BAO L, WANG M T, LIU J C, et al. Estimation method of wheat yield based on convolution neural network[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. (in Chinese with English abstract) | |
[13] | 杨万里, 段凌凤, 杨万能. 基于深度学习的水稻表型特征提取和穗质量预测研究[J]. 华中农业大学学报, 2021, 40(1): 227-235. |
YANG W L, DUAN L F, YANG W N. Deep learning-based extraction of rice phenotypic characteristics and prediction of rice panicle weight[J]. Journal of Huazhong Agricultural University, 2021, 40(1): 227-235. (in Chinese with English abstract) | |
[14] | 李昊, 刘海隆, 刘生龙. 基于深度学习的柑橘病虫害动态识别系统研发[J]. 中国农机化学报, 2021, 42(9): 195-201. |
LI H, LIU H L, LIU S L. Research on dynamic identification system of citrus diseases and pests based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 195-201. (in Chinese with English abstract) | |
[15] | ŠKRUBEJ U, ROZMAN Č, STAJNKO D. The accuracy of the germination rate of seeds based on image processing and artificial neural networks[J]. Agricultura, 2015, 12(1/2): 19-24. |
[16] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016: 779-788. |
[17] | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 6517-6525. |
[18] | REDMON J, FARHADI A. YOLO v3: all incremental improvement[C]// 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2018. |
[19] | ALEXEY B, CHIEN Y W, HONG Y M L.YOLOv4: optimal speed and accuracy of object detection[C]// 2020 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2020. |
[20] | 刘天真, 滕桂法, 苑迎春, 等. 基于改进YOLO v3的自然场景下冬枣果实识别方法[J]. 农业机械学报, 2021, 52(5): 17-25. |
LIU T Z, TENG G F, YUAN Y C, et al. Winter jujube fruit recognition method based on improved YOLO v3 under natural scene[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 17-25. (in Chinese with English abstract) | |
[21] | 权龙哲, 夏福霖, 姜伟, 等. 基于YOLO v4卷积神经网络的农田苗草识别研究[J]. 东北农业大学学报, 2021, 52(7): 89-98. |
QUAN L Z, XIA F L, JIANG W, et al. Research on recognition of maize seedlings and weeds in maize mield based on YOLO v4 convolutional neural network[J]. Journal of Northeast Agricultural University, 2021, 52(7): 89-98. (in Chinese with English abstract) | |
[22] | 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173. |
ZHAO D A, WU R D, LIU X Y, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 164-173. (in Chinese with English abstract) | |
[23] | 张晴晴, 刘连忠, 宁井铭, 等. 基于YOLOV3优化模型的复杂场景下茶树嫩芽识别[J]. 浙江农业学报, 2021, 33(9): 1740-1747. |
ZHANG Q Q, LIU L Z, NING J M, et al. Tea buds recognition under complex scenes based on optimized YOLOV3 model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. (in Chinese with English abstract) | |
[24] | DU J. Understanding of object detection based on CNN family and YOLO[J]. Journal of Physics: Conference Series, 2018, 1004: 012029. |
[25] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, 2017: 2261-2269. |
[26] | REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[EB/OL]. arXiv, 2019: 1902. 09630. https://arxiv.org/abs/1902.09630. |
[27] | 张红生, 王州飞. 种子学[M]. 3版. 北京: 科学出版社, 2021. |
[1] | ZHU Shisong, MA Wanli, ZHAO Lishan, ZHENG Yanmei, ZHENG Xianbo, LU Bibo. Apple leaf image segmentation algorithm based on improved LinkNet [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 202-214. |
[2] | CHEN Daohuai, WANG Hangjun. Detection of forest pests based on improved YOLOv4 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1306-1315. |
[3] | LI Chao, LI Feng, HUANG Weijia. Fruit variety recognition based on parallel convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2533-2541. |
[4] | ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. |
[5] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[6] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
[7] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 781
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 340
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||