Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1993-2012.DOI: 10.3969/j.issn.1004-1524.20236105
• Review • Previous Articles Next Articles
PAN Pan1,2(), ZHANG Jianhua1,2,*(
), ZHENG Xiaoming2,3, ZHOU Guomin2,4, HU Lin1,2, FENG Quan5, CHAI Xiujuan1,2
Received:
2023-02-05
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
PAN Pan, ZHANG Jianhua, ZHENG Xiaoming, ZHOU Guomin, HU Lin, FENG Quan, CHAI Xiujuan. Research progress of deep learning in intelligent identification of disease resistance of crops and their related species[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1993-2012.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20236105
Fig.2 Realization process of intelligent identification of disease resistance of crops and their related species based on deep learning PSPNet,Pyramid scene parsing network;SegNet,Segmentation network;Faster R-CNN,Faster region-based convolutional neural network;YOLO,You only look once;VGG,Visual geometry group;SSD,Single shot multibox detector;YOLACT,You only look at coefficients。
编号 No. | 文献 Reference | 年份 Year | 物种 Species | 病害 Disease | 数据集获取方式 Datasets obtaining method | 数据集图像 数量 Image quaity in datase | 数据增强后的 图像数量 Image quantity after data augmentation | 检测网络框架 Framework of detection network | 平均检测时间 Average detection time | 平均精度 Average precision (mAP) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Zhou等[ Zhou et al.[ | 2019 | 水稻 Rice | 白叶枯病、稻瘟病、纹枯病 Rice leaf blight, rice blast, rice sheath blight | 田间采集 Field collection | 3 010 | 7 448 | Faster R-CNN | 稻瘟病0.65 s,白叶枯病 0.82 s,纹枯病0.53 s Rice blast 0.65 s, rice leaf blight 0.82 s, rice sheath blight 0.53 s | 97.20% |
2 | Li等[ Li et al.[ | 2020 | 水稻 Rice | 纹枯病、胡麻斑病 Rice sheath blight, rice brown spot | 田间采集 Field collection | 5 320 | — | Faster R-CNN | — | — |
3 | Masood等[ Masood et al.[ | 2020 | 水稻 Rice | — | 田间采集 Field collection | 1 700 | — | Mask R-CNN | — | 87.60% |
4 | Sethy等[ Sethy et al.[ | 2020 | 水稻 Rice | 稻曲病 Rice false smut | 田间采集 Field collection | 50 | — | Faster R-CNN | — | — |
5 | Agbulos等[ Agbulos et al. [ | 2021 | 水稻 Rice | 稻瘟病、胡麻斑病 Rice blast, rice brown spot | Kaggle | 200 | — | YOLOv3 | — | 73.33% |
6 | Anandhan等[ Anandhan et al.[ | 2021 | 水稻 Rice | 胡麻斑病、稻瘟病、纹枯病 Rice brown spot, rice blast, rice sheath blight | 田间采集 Field collection | 1 500 | — | Mask R-CNN | — | 稻瘟病96.00%,胡麻斑病95.00%,纹枯病94.50% Rice blast 96.00%, rice brown spot 95.00%, rice sheath blight 94.50% |
7 | Bari等[ Bari et al.[ | 2021 | 水稻 Rice | 胡麻斑病、稻瘟病 Rice brown spot, rice blast | 田间采集、Kaggle Field collection, Kaggle | 2 400 | 16 800 | Faster R-CNN | — | 健康叶片99.25%,稻瘟病 98.09%,胡麻斑病 98.85% Healthy leaves 99.25%, rice blast 98.09%, rice brown spot 98.85% |
8 | Jhatial等[ Jhatial et al.[ | 2022 | 水稻 Rice | 白叶枯病、稻瘟病、东格鲁病毒病、胡麻斑病 Rice leaf blight, rice blast, rice tungro spherical virus disease, rice brown spot | Kaggle | 400 | — | YOLOv5 | — | 62.00% |
9 | 江鹏等[ Jiang et al.[ | 2019 | 苹果 Apple | 褐斑病、花叶病、铁锈病 Apple brown spot, apple mosaic, apple rust | 田间采集 Field collection | 1 248 | — | SSD | — | 79.63% |
10 | Sardoğan等[ Sardoğan et al.[ | 2020 | 苹果 Apple | 黑斑病 Black spot | 田间采集 Field collection | 700 | — | Faster R-CNN | — | 84.50% |
11 | 邸洁等[ Di et al.[ | 2020 | 苹果 Apple | 黑星病 、黑腐病、雪松锈病 Apple scab, apple rot, cedar apple rust | PlantVillage | 1 404 | — | Tiny-YOLO | 3.57 ms | 99.86% |
12 | 李鑫然等[ Li et al.[ | 2021 | 苹果 Apple | 斑点落叶病、褐斑病、花叶病、灰斑病、锈病 Alternaria leaf spot, brown spot, apple mosaic, gray spot, apple rust | PlantVillage、 田间采集 PlantVillage, Field collection | 2 029 | 20 050 | Faster R-CNN | 0.208 s | 82.48% |
13 | Di等[ Di et al.[ | 2022 | 苹果 Apple | 黑星病 、黑腐病、雪松锈病 Apple scab, apple rot, cedar apple rust | PlantVillage | 1 404 | — | Tiny-YOLO | 3.57 ms | 99.99% |
14 | Li等[ Li et al.[ | 2022 | 苹果 Apple | 苹果斑点落叶病,等 Alternaria leaf spot, etc | 田间采集 Field collection | 1 587 | 24 757 | YOLOv5 | 29.4 ms | 96.04% |
15 | 王远志等[ Wang et al.[ | 2022 | 苹果 Apple | 雪松锈病、灰斑病、黑星病 Cedar apple rust, gray spot, apple scab | PlantVillage | 730 | 3 879 | Faster R-CNN | 0.201 s | 87.21% |
16 | 李就好等[ Li et al.[ | 2020 | 苦瓜 Bitter melon | 白粉病、灰斑病、蔓枯病、斑点病 Powdery mildew, gray leaf spot, gummy stem blight, phyllosticta leaf spot | 田间采集、 ImageNet Field collection, ImageNet | 1 204 | 10 627 | Faster R-CNN | 0.322 s | 86.39% |
17 | 刘延鑫等[ Liu et al.[ | 2022 | 烟草 Tobacco | 普通花叶病、黄瓜花叶病毒病、赤星病、烟草野火病、气候性斑点病 Ccommon mosaic disease, cucumber mosaic virus disease, scab disease, tobacco wildfire disease, climatic spot disease | 田间采集 Field collection | 1 750 | 4 500 | YOLOv3 | 0.31 s | 77.00% |
18 | 刘阗宇等[ LIU et al.[ | 2018 | 葡萄 Grape | 褐斑病、白粉病、灰霉病、霜霉病、黑痘病、炭疽病 Brown spot, powdery mildew, botrytis, downy mildew, black pox, anthracnose | 田间采集 Field collection | 6 000 | — | Faster R-CNN | 1.416 s | 66.47% |
19 | 樊湘鹏等[ Fan et al.[ | 2021 | 葡萄 Grape | 白粉病、霜霉病、黑霉病、花叶病毒病、褐斑病 Powdery mildew, downy mildew, black mould blight, mosaic virus disease, brown spot | 田间采集 Field collection | 1 990 | 19 900 | CNN | 0.327 s | 98.02% |
20 | Wang等[ Wang et al.[ | 2021 | 番茄 Tomato | 早疫病、晚疫病、番茄黄化卷叶病毒病、褐斑病,等 Early blight, late blight, yellow leaf curl virus, brown spot, etc | 田间采集、互联网 PlantVillage, Internet | 15 000 | — | YOLOv3 | 20.28 ms | 96.41% |
21 | 陶国柱等[ Tao et al.[ | 2021 | 番茄 Tomato | 细菌性斑点病、早疫病、晚疫病、病毒病、叶霉病、白粉病 Bacterial leaf spot, early blight, late blight, virus disease, leaf mould, powdery mildew | PlantVillage等互 联网渠道 Internet channels such as PlantVillage | 4 529 | 5 574 | YOLOv4 | 13.3 ms | 86.23% |
22 | Islam等[ Islam et al.[ | 2019 | 马铃薯 Potato | 早疫病、晚疫病 Early blight, late blight | PlantVillage | 2 152 | — | CNN | — | 99.43% |
23 | 赵越等[ Zhao et al.[ | 2022 | 马铃薯 Potato | 早疫病、晚疫病 Early blight, late blight | Kaggle | — | 8 109 | Faster R-CNN | — | 99.50% |
24 | Zhang等[ Zhang et al.[ | 2021 | 大豆 Soybean | 病毒菌、灰斑病、细菌性斑点病 Virus disease, frogeye leaf spot, bacterial spot | 田间采集 Field collection | — | 2 230 | Faster R-CNN | — | 83.34% |
25 | Wang等[ Wang et al.[ | 2022 | 花生 Peanut | 花生褐斑病、花生锈斑病 Rrown spot, peanut rust | PlantVillage、 田间采集 PlantVillage, field collection | 36 258(Plant Village) +4 631(田间采集) 36 258 (Plant Village)+4 631 (field collection) | — | YOLOv5 | 15 ms | 93.73% |
26 | Li等[ Li et al.[ | 2022 | 黄麻 Jute | 茎腐病、炭疽病、黑带病、软腐病、尖枯病、枯萎病、黄麻花叶病、黄麻黄化病 Stem rot, anthracnose, black band, soft rot, tip blight, dieback, jute mosaic, jute chlorosis | 田间采集 Field collection | 4 418 | — | YOLOv5 | — | 96.63% |
27 | Sert[ Sert[ | 2021 | 马铃薯、 辣椒 Potato, pepper | 辣椒细菌性斑点病、马铃薯早疫病、马铃薯晚疫病 Pepper bacterial spot, potato early blight, potato late blight | PlantVillage 、 田间采集 PlantVillage, Field collection | 544(田间采 集)+6 023 (PlantVillage) 544 (field collection)+ 6 023 (PlantVillage) | 2 176(田间 采集) 2176 (field collection) | Faster R_CNN | — | 98.06% |
28 | Shill 等[ Shill et al.[ | 2021 | 苹果、番茄等13种植物 13 plants including apple and tomato | 苹果黑腐病等17种 17 diseases such as apple rot | PlantDoc | 2 598 | — | YOLOv4/YOLOv3 | — | 55.45% |
Table 1 Advances in detection of crop leaf diseases
编号 No. | 文献 Reference | 年份 Year | 物种 Species | 病害 Disease | 数据集获取方式 Datasets obtaining method | 数据集图像 数量 Image quaity in datase | 数据增强后的 图像数量 Image quantity after data augmentation | 检测网络框架 Framework of detection network | 平均检测时间 Average detection time | 平均精度 Average precision (mAP) |
---|---|---|---|---|---|---|---|---|---|---|
1 | Zhou等[ Zhou et al.[ | 2019 | 水稻 Rice | 白叶枯病、稻瘟病、纹枯病 Rice leaf blight, rice blast, rice sheath blight | 田间采集 Field collection | 3 010 | 7 448 | Faster R-CNN | 稻瘟病0.65 s,白叶枯病 0.82 s,纹枯病0.53 s Rice blast 0.65 s, rice leaf blight 0.82 s, rice sheath blight 0.53 s | 97.20% |
2 | Li等[ Li et al.[ | 2020 | 水稻 Rice | 纹枯病、胡麻斑病 Rice sheath blight, rice brown spot | 田间采集 Field collection | 5 320 | — | Faster R-CNN | — | — |
3 | Masood等[ Masood et al.[ | 2020 | 水稻 Rice | — | 田间采集 Field collection | 1 700 | — | Mask R-CNN | — | 87.60% |
4 | Sethy等[ Sethy et al.[ | 2020 | 水稻 Rice | 稻曲病 Rice false smut | 田间采集 Field collection | 50 | — | Faster R-CNN | — | — |
5 | Agbulos等[ Agbulos et al. [ | 2021 | 水稻 Rice | 稻瘟病、胡麻斑病 Rice blast, rice brown spot | Kaggle | 200 | — | YOLOv3 | — | 73.33% |
6 | Anandhan等[ Anandhan et al.[ | 2021 | 水稻 Rice | 胡麻斑病、稻瘟病、纹枯病 Rice brown spot, rice blast, rice sheath blight | 田间采集 Field collection | 1 500 | — | Mask R-CNN | — | 稻瘟病96.00%,胡麻斑病95.00%,纹枯病94.50% Rice blast 96.00%, rice brown spot 95.00%, rice sheath blight 94.50% |
7 | Bari等[ Bari et al.[ | 2021 | 水稻 Rice | 胡麻斑病、稻瘟病 Rice brown spot, rice blast | 田间采集、Kaggle Field collection, Kaggle | 2 400 | 16 800 | Faster R-CNN | — | 健康叶片99.25%,稻瘟病 98.09%,胡麻斑病 98.85% Healthy leaves 99.25%, rice blast 98.09%, rice brown spot 98.85% |
8 | Jhatial等[ Jhatial et al.[ | 2022 | 水稻 Rice | 白叶枯病、稻瘟病、东格鲁病毒病、胡麻斑病 Rice leaf blight, rice blast, rice tungro spherical virus disease, rice brown spot | Kaggle | 400 | — | YOLOv5 | — | 62.00% |
9 | 江鹏等[ Jiang et al.[ | 2019 | 苹果 Apple | 褐斑病、花叶病、铁锈病 Apple brown spot, apple mosaic, apple rust | 田间采集 Field collection | 1 248 | — | SSD | — | 79.63% |
10 | Sardoğan等[ Sardoğan et al.[ | 2020 | 苹果 Apple | 黑斑病 Black spot | 田间采集 Field collection | 700 | — | Faster R-CNN | — | 84.50% |
11 | 邸洁等[ Di et al.[ | 2020 | 苹果 Apple | 黑星病 、黑腐病、雪松锈病 Apple scab, apple rot, cedar apple rust | PlantVillage | 1 404 | — | Tiny-YOLO | 3.57 ms | 99.86% |
12 | 李鑫然等[ Li et al.[ | 2021 | 苹果 Apple | 斑点落叶病、褐斑病、花叶病、灰斑病、锈病 Alternaria leaf spot, brown spot, apple mosaic, gray spot, apple rust | PlantVillage、 田间采集 PlantVillage, Field collection | 2 029 | 20 050 | Faster R-CNN | 0.208 s | 82.48% |
13 | Di等[ Di et al.[ | 2022 | 苹果 Apple | 黑星病 、黑腐病、雪松锈病 Apple scab, apple rot, cedar apple rust | PlantVillage | 1 404 | — | Tiny-YOLO | 3.57 ms | 99.99% |
14 | Li等[ Li et al.[ | 2022 | 苹果 Apple | 苹果斑点落叶病,等 Alternaria leaf spot, etc | 田间采集 Field collection | 1 587 | 24 757 | YOLOv5 | 29.4 ms | 96.04% |
15 | 王远志等[ Wang et al.[ | 2022 | 苹果 Apple | 雪松锈病、灰斑病、黑星病 Cedar apple rust, gray spot, apple scab | PlantVillage | 730 | 3 879 | Faster R-CNN | 0.201 s | 87.21% |
16 | 李就好等[ Li et al.[ | 2020 | 苦瓜 Bitter melon | 白粉病、灰斑病、蔓枯病、斑点病 Powdery mildew, gray leaf spot, gummy stem blight, phyllosticta leaf spot | 田间采集、 ImageNet Field collection, ImageNet | 1 204 | 10 627 | Faster R-CNN | 0.322 s | 86.39% |
17 | 刘延鑫等[ Liu et al.[ | 2022 | 烟草 Tobacco | 普通花叶病、黄瓜花叶病毒病、赤星病、烟草野火病、气候性斑点病 Ccommon mosaic disease, cucumber mosaic virus disease, scab disease, tobacco wildfire disease, climatic spot disease | 田间采集 Field collection | 1 750 | 4 500 | YOLOv3 | 0.31 s | 77.00% |
18 | 刘阗宇等[ LIU et al.[ | 2018 | 葡萄 Grape | 褐斑病、白粉病、灰霉病、霜霉病、黑痘病、炭疽病 Brown spot, powdery mildew, botrytis, downy mildew, black pox, anthracnose | 田间采集 Field collection | 6 000 | — | Faster R-CNN | 1.416 s | 66.47% |
19 | 樊湘鹏等[ Fan et al.[ | 2021 | 葡萄 Grape | 白粉病、霜霉病、黑霉病、花叶病毒病、褐斑病 Powdery mildew, downy mildew, black mould blight, mosaic virus disease, brown spot | 田间采集 Field collection | 1 990 | 19 900 | CNN | 0.327 s | 98.02% |
20 | Wang等[ Wang et al.[ | 2021 | 番茄 Tomato | 早疫病、晚疫病、番茄黄化卷叶病毒病、褐斑病,等 Early blight, late blight, yellow leaf curl virus, brown spot, etc | 田间采集、互联网 PlantVillage, Internet | 15 000 | — | YOLOv3 | 20.28 ms | 96.41% |
21 | 陶国柱等[ Tao et al.[ | 2021 | 番茄 Tomato | 细菌性斑点病、早疫病、晚疫病、病毒病、叶霉病、白粉病 Bacterial leaf spot, early blight, late blight, virus disease, leaf mould, powdery mildew | PlantVillage等互 联网渠道 Internet channels such as PlantVillage | 4 529 | 5 574 | YOLOv4 | 13.3 ms | 86.23% |
22 | Islam等[ Islam et al.[ | 2019 | 马铃薯 Potato | 早疫病、晚疫病 Early blight, late blight | PlantVillage | 2 152 | — | CNN | — | 99.43% |
23 | 赵越等[ Zhao et al.[ | 2022 | 马铃薯 Potato | 早疫病、晚疫病 Early blight, late blight | Kaggle | — | 8 109 | Faster R-CNN | — | 99.50% |
24 | Zhang等[ Zhang et al.[ | 2021 | 大豆 Soybean | 病毒菌、灰斑病、细菌性斑点病 Virus disease, frogeye leaf spot, bacterial spot | 田间采集 Field collection | — | 2 230 | Faster R-CNN | — | 83.34% |
25 | Wang等[ Wang et al.[ | 2022 | 花生 Peanut | 花生褐斑病、花生锈斑病 Rrown spot, peanut rust | PlantVillage、 田间采集 PlantVillage, field collection | 36 258(Plant Village) +4 631(田间采集) 36 258 (Plant Village)+4 631 (field collection) | — | YOLOv5 | 15 ms | 93.73% |
26 | Li等[ Li et al.[ | 2022 | 黄麻 Jute | 茎腐病、炭疽病、黑带病、软腐病、尖枯病、枯萎病、黄麻花叶病、黄麻黄化病 Stem rot, anthracnose, black band, soft rot, tip blight, dieback, jute mosaic, jute chlorosis | 田间采集 Field collection | 4 418 | — | YOLOv5 | — | 96.63% |
27 | Sert[ Sert[ | 2021 | 马铃薯、 辣椒 Potato, pepper | 辣椒细菌性斑点病、马铃薯早疫病、马铃薯晚疫病 Pepper bacterial spot, potato early blight, potato late blight | PlantVillage 、 田间采集 PlantVillage, Field collection | 544(田间采 集)+6 023 (PlantVillage) 544 (field collection)+ 6 023 (PlantVillage) | 2 176(田间 采集) 2176 (field collection) | Faster R_CNN | — | 98.06% |
28 | Shill 等[ Shill et al.[ | 2021 | 苹果、番茄等13种植物 13 plants including apple and tomato | 苹果黑腐病等17种 17 diseases such as apple rot | PlantDoc | 2 598 | — | YOLOv4/YOLOv3 | — | 55.45% |
编号 No. | 文献 Reference | 物种 Species | 病害类型 Disease type | 数据集获取方式 Dataset obtaining method | 分割网络 Framework of segmentation network | 准确度 Accuracy/% |
---|---|---|---|---|---|---|
1 | Jia等[ Jia et al.[ | 柿 Persimmon | 叶斑病、灰霉病 Leaf spot, gray mold | 田间采集 Field collection | U-Net | 89.18 |
2 | Liang等[ Liang et al.[ | 小麦 Wheat | 白粉病 Powdery mildew | — | U-Net | 91.40 |
3 | Chen等[ Chen et al.[ | 水稻 Rice | 细菌性条斑病 Bacterial streak | 田间采集 Field collection | U-Net | 95.60 |
4 | Agarwal等[ Agarwal et al.[ | 马铃薯 Potato | 晚疫病 Late blight | 公开数据集 Public dataset | SegNet | 94.74 |
5 | Tassis等[ Tassis et al.[ | 咖啡 Coffee | 锈病、褐斑病、叶斑病 Rust, brown spot, leaf spot | 田间采集 Field collection | PSPNet | 93.54 |
6 | Li等[ Li et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病 Downy mildew, powdery mildew | 田间采集 Field collection | DeepLab V3+ | 81.23 |
7 | Yao等[ Yao et al.[ | 猕猴桃 Kiwi fruit | 褐斑病、溃疡病 Brown spot, canker | 田间采集 Field collection | DeepLab V3+ | 96.60 |
8 | Wang等[ Wang et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病、病毒病 Downy mildew, powdery mildew, viral disease | 田间采集 Field collection | DeepLab V3+,U-Net | 93.27 |
9 | Deng等[ Deng et al.[ | 小麦 Wheat | 条锈病 Stripe rust | 田间采集 Field collection | SegFormer | 72.60 |
Table 2 Advances in semantic segmentation of crop diseases
编号 No. | 文献 Reference | 物种 Species | 病害类型 Disease type | 数据集获取方式 Dataset obtaining method | 分割网络 Framework of segmentation network | 准确度 Accuracy/% |
---|---|---|---|---|---|---|
1 | Jia等[ Jia et al.[ | 柿 Persimmon | 叶斑病、灰霉病 Leaf spot, gray mold | 田间采集 Field collection | U-Net | 89.18 |
2 | Liang等[ Liang et al.[ | 小麦 Wheat | 白粉病 Powdery mildew | — | U-Net | 91.40 |
3 | Chen等[ Chen et al.[ | 水稻 Rice | 细菌性条斑病 Bacterial streak | 田间采集 Field collection | U-Net | 95.60 |
4 | Agarwal等[ Agarwal et al.[ | 马铃薯 Potato | 晚疫病 Late blight | 公开数据集 Public dataset | SegNet | 94.74 |
5 | Tassis等[ Tassis et al.[ | 咖啡 Coffee | 锈病、褐斑病、叶斑病 Rust, brown spot, leaf spot | 田间采集 Field collection | PSPNet | 93.54 |
6 | Li等[ Li et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病 Downy mildew, powdery mildew | 田间采集 Field collection | DeepLab V3+ | 81.23 |
7 | Yao等[ Yao et al.[ | 猕猴桃 Kiwi fruit | 褐斑病、溃疡病 Brown spot, canker | 田间采集 Field collection | DeepLab V3+ | 96.60 |
8 | Wang等[ Wang et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病、病毒病 Downy mildew, powdery mildew, viral disease | 田间采集 Field collection | DeepLab V3+,U-Net | 93.27 |
9 | Deng等[ Deng et al.[ | 小麦 Wheat | 条锈病 Stripe rust | 田间采集 Field collection | SegFormer | 72.60 |
编号 No. | 文献 Reference | 物种 Species | 病害类型 Disease type | 数据集获取方式 Dataset obtaining method | 准确度 Accuracy/% |
---|---|---|---|---|---|
1 | Zhang等[ Zhang et al.[ | 水稻 Rice | 白叶枯病 Leaf blight | 田间采集 Field collection | 81.00 |
2 | Das等[ Das et al.[ | 水稻 Rice | — | 公开数据集 Public dataset | 93.28 |
3 | Afzaal等[ Afzaal et al.[ | 草莓 Strawberry | 角斑病、花腐病,等 Angular leafspot, blossom bligh, etc. | 田间采集 Field collection | 82.43 |
4 | Stewart等[ Stewart et al.[ | 玉米 Maize | 叶枯病 Leaf blight | 田间采集 Field collection | 96.00 |
5 | Storey等[ Storey et al.[ | 苹果 Apple | 锈病 Apple rust | 公开数据集 Public dataset | 48.90 |
6 | Mu等[ Mu et al.[ | 梨 Pear | 褐斑病、灰斑病、轮纹病 Brown spot, gray spot, ring spot | 田间采集 Field collection | 88.55 |
Table 3 Research progress of top-down case segmentation method in crop disease segmentation
编号 No. | 文献 Reference | 物种 Species | 病害类型 Disease type | 数据集获取方式 Dataset obtaining method | 准确度 Accuracy/% |
---|---|---|---|---|---|
1 | Zhang等[ Zhang et al.[ | 水稻 Rice | 白叶枯病 Leaf blight | 田间采集 Field collection | 81.00 |
2 | Das等[ Das et al.[ | 水稻 Rice | — | 公开数据集 Public dataset | 93.28 |
3 | Afzaal等[ Afzaal et al.[ | 草莓 Strawberry | 角斑病、花腐病,等 Angular leafspot, blossom bligh, etc. | 田间采集 Field collection | 82.43 |
4 | Stewart等[ Stewart et al.[ | 玉米 Maize | 叶枯病 Leaf blight | 田间采集 Field collection | 96.00 |
5 | Storey等[ Storey et al.[ | 苹果 Apple | 锈病 Apple rust | 公开数据集 Public dataset | 48.90 |
6 | Mu等[ Mu et al.[ | 梨 Pear | 褐斑病、灰斑病、轮纹病 Brown spot, gray spot, ring spot | 田间采集 Field collection | 88.55 |
编号 No. | 文献 Reference | 物种 Species | 病害 Disease | 病害等级 Disease severity | 数据集获取方式 Dataset obtaining method | 数据集图像 数量 Image quaity in datase | 准确度 Accuracy/ % |
---|---|---|---|---|---|---|---|
1 | Wu等[ Wu et al.[ | 番茄 Tomato | 早疫病、晚疫病 Early blight, late blight | 健康、轻度早疫病、重度早疫病、轻度晚疫病、重度晚疫病 Healthy, mild early blight, severe early blight, mild late blight, severe late blight | 公开数据集 Public dataset | 2 856 | 96.40 |
2 | Wang等[ Wang et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病、病毒病 Downy mildew, powdery mildew, viral disease | 按病斑在叶片中的占比分为L1~L5五个等级 Divided into five levels (L1~L5) based on the percentage of leaf area affected by the lesions | 田间采集 Field collection | 1 000 | 92.85 |
3 | Li等[ Li et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病 Downy mildew, powdery mildew | 健康、病叶 Healthy, diseased leaves | 田间采集 Field collection | 3 036 | 95.78 |
4 | Deng等[ Deng et al.[ | 小麦 Wheat | 条锈病 Stripe rust | 健康、条锈病(宏观疾病指数MDI) Healthy, stripe rust (macro disease index, MDI) | 田间采集 Field collection | 25 530 | 99.20 |
5 | Chen等[ Chen et al.[ | 水稻 Rice | 细菌性条斑病 Bacterial streak | 按病斑在叶片中的占比分为1~5级 Divided into five levels (1-5) based on the percentage of leaf area affected by the lesions | 田间采集 Field collection | 1 199 | 94.00 |
6 | 何东健等[ He et al.[ | 葡萄 Grape | 霜霉病 Downy mildew | 健康、前期、中期、后期 Healthy, early stage, mid-stage, late stage | 田间采集 Field collection | 4 470 | 99.92 |
7 | 刘斌等[ Liu et al.[ | 苹果 Apple | 黑星病、锈病 Black spot, apple rust | 健康、早期黑星病、晚期黑星病、早期锈病、晚期锈病 Healthy, early stage of black spot, late stage of black spot, early stage of apple rust, late stage of apple rust disease | 公开数据集,田间采集 Public dataset, Field collection | 20 110 | 90.82 |
8 | 万军杰等[ Wan et al.[ | 苹果等6类植物 6 kinds of plants including apple | 黑星病等25类病虫害 25 types of pests and diseases such as apple scab | 健康、Ⅰ级、Ⅱ级 Healthy, Level Ⅰ, Level Ⅱ | 公开数据集、田间采集 Public dataset, Field collection | 13 153 | 99.35 |
9 | Esgario等[ Esgario et al.[ | 咖啡 Coffee | 锈病、褐斑病 Rust, brown spot | 健康、非常低、低、高、非常高 Healthy, very low, low, high, and very high | 田间采集 Field collection | 4 407 | 86.51 |
Table 4 Research progress in leaf disease index assessment
编号 No. | 文献 Reference | 物种 Species | 病害 Disease | 病害等级 Disease severity | 数据集获取方式 Dataset obtaining method | 数据集图像 数量 Image quaity in datase | 准确度 Accuracy/ % |
---|---|---|---|---|---|---|---|
1 | Wu等[ Wu et al.[ | 番茄 Tomato | 早疫病、晚疫病 Early blight, late blight | 健康、轻度早疫病、重度早疫病、轻度晚疫病、重度晚疫病 Healthy, mild early blight, severe early blight, mild late blight, severe late blight | 公开数据集 Public dataset | 2 856 | 96.40 |
2 | Wang等[ Wang et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病、病毒病 Downy mildew, powdery mildew, viral disease | 按病斑在叶片中的占比分为L1~L5五个等级 Divided into five levels (L1~L5) based on the percentage of leaf area affected by the lesions | 田间采集 Field collection | 1 000 | 92.85 |
3 | Li等[ Li et al.[ | 黄瓜 Cucumber | 霜霉病、白粉病 Downy mildew, powdery mildew | 健康、病叶 Healthy, diseased leaves | 田间采集 Field collection | 3 036 | 95.78 |
4 | Deng等[ Deng et al.[ | 小麦 Wheat | 条锈病 Stripe rust | 健康、条锈病(宏观疾病指数MDI) Healthy, stripe rust (macro disease index, MDI) | 田间采集 Field collection | 25 530 | 99.20 |
5 | Chen等[ Chen et al.[ | 水稻 Rice | 细菌性条斑病 Bacterial streak | 按病斑在叶片中的占比分为1~5级 Divided into five levels (1-5) based on the percentage of leaf area affected by the lesions | 田间采集 Field collection | 1 199 | 94.00 |
6 | 何东健等[ He et al.[ | 葡萄 Grape | 霜霉病 Downy mildew | 健康、前期、中期、后期 Healthy, early stage, mid-stage, late stage | 田间采集 Field collection | 4 470 | 99.92 |
7 | 刘斌等[ Liu et al.[ | 苹果 Apple | 黑星病、锈病 Black spot, apple rust | 健康、早期黑星病、晚期黑星病、早期锈病、晚期锈病 Healthy, early stage of black spot, late stage of black spot, early stage of apple rust, late stage of apple rust disease | 公开数据集,田间采集 Public dataset, Field collection | 20 110 | 90.82 |
8 | 万军杰等[ Wan et al.[ | 苹果等6类植物 6 kinds of plants including apple | 黑星病等25类病虫害 25 types of pests and diseases such as apple scab | 健康、Ⅰ级、Ⅱ级 Healthy, Level Ⅰ, Level Ⅱ | 公开数据集、田间采集 Public dataset, Field collection | 13 153 | 99.35 |
9 | Esgario等[ Esgario et al.[ | 咖啡 Coffee | 锈病、褐斑病 Rust, brown spot | 健康、非常低、低、高、非常高 Healthy, very low, low, high, and very high | 田间采集 Field collection | 4 407 | 86.51 |
[1] | 徐如梦, 李冬月, 刘秀丽, 等. 水稻白叶枯病发病过程及抗病育种新思路[J]. 浙江农业科学, 2022, 63(1): 114-120. |
XU R M, LI D Y, LIU X L, et al. Disease development and resistance breeding of rice bacterial blight[J]. Journal of Zhejiang Agricultural Sciences, 2022, 63(1): 114-120. (in Chinese) | |
[2] | CHEN X F, LIU P C, MEI L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice[J]. Plant Communications, 2021, 2(3): 100143. |
[3] | 安徽省农作物品种审定委员会. 农作物品种抗病性鉴定指南(试行): PSJG 1101—2009[S]. 合肥: 安徽省农作物品种审定委员会, 2009. |
[4] | 中国农业百科全书总编辑委员会. 中国农业百科全书:农作物卷[M]. 北京: 农业出版社, 1998. |
[5] | 胡积祥, 朱秀梅, 余超, 等. miR1320表达水平与水稻白叶枯病抗性的关联性分析[J]. 植物保护, 2021, 47(5): 110-117. |
HU J X, ZHU X M, YU C, et al. Analysis of the correlation between the expression level of miR1320 and resistance to bacterial blight in rice[J]. Plant Protection, 2021, 47(5): 110-117. (in Chinese with English abstract) | |
[6] | 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251. |
ZHOU F Y, JIN L P, DONG J. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. (in Chinese with English abstract) | |
[7] | 郭奥楠, 杨学达, 花薇. 辽宁玉米品种抗病性鉴定分析[J]. 农业开发与装备, 2021(7): 175-176. |
GUO A N, YANG X D, HUA W. Identification and analysis of disease resistance of maize varieties in Liaoning Province[J]. Agricultural Development & Equipments, 2021(7): 175-176. (in Chinese) | |
[8] | 童文志. 水稻三大病害的抗性研究进展[J]. 农村实用技术, 2022(5): 97-98. |
TONG W Z. Research progress on resistance to three major diseases of rice[J]. Nongcun Shiyong Jishu, 2022(5): 97-98. (in Chinese) | |
[9] | 刘占领, 雷财林, 程治军, 等. 水稻稻瘟病抗性基因定位与克隆研究进展[J]. 作物杂志, 2007(3): 16-19. |
LIU Z L, LEI C L, CHENG Z J, et al. Advances in mapping and cloning of rice blast resistance genes[J]. Crops, 2007(3): 16-19. (in Chinese) | |
[10] | 2022年全国农作物重大病虫害发生趋势预报[J]. 中国植保导刊, 2022, 42(4): 107-108. |
Trend forecast of major crop diseases and insect pests in China in 2022[J]. China Plant Protection, 2022, 42(4): 107-108. (in Chinese) | |
[11] | 中国农业百科全书总编辑委员会. 中国农业百科全书:植物病理学卷[M]. 北京: 农业出版社, 01-Aug-2000. |
[12] | 贺闽, 尹俊杰, 冯志明, 等. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 577-587. |
HE M, YIN J J, FENG Z M, et al. Methods for evaluation of rice resistance to blast and sheath blight diseases[J]. Chinese Bulletin of Botany, 2020, 55(5): 577-587. (in Chinese with English abstract) | |
[13] | 崔华威, 杨艳丽, 黎敬涛, 等. 一种基于Photoshop的叶片相对病斑面积快速测定方法[J]. 安徽农业科学, 2009, 37(22): 10760-10762. |
CUI H W, YANG Y L, LI J T, et al. A faster method for measuring relative lesion area on leaves based on software photoshop[J]. Journal of Anhui Agricultural Sciences, 2009, 37(22): 10760-10762. (in Chinese with English abstract) | |
[14] | 中华人民共和国农业部. 水稻品种试验稻瘟病抗性鉴定与评价技术规程: NY/T 2646—2014[S]. 北京: 中国农业出版社, 2015. |
[15] | 虞玲锦, 张国良, 丁秀文, 等. 水稻抗白叶枯病基因及其应用研究进展[J]. 植物生理学报, 2012, 48(3): 223-231. |
YU L J, ZHANG G L, DING X W, et al. Progress in identification and application of resistance genes to bacterial blight[J]. Plant Physiology Journal, 2012, 48(3): 223-231. (in Chinese with English abstract) | |
[16] | 王运丰. 水稻白叶枯病的综合防治措施[J]. 农村实用科技信息, 2011(8): 38. |
WANG Y F. Comprehensive control measures of rice bacterial blight[J]. Modern Agriculture Research, 2011(8): 38. (in Chinese) | |
[17] | 方中达, 许志刚, 过崇俭, 等. 中国水稻白叶枯病菌致病型的研究[J]. 植物病理学报, 1990, 20(2): 81-88. |
FANG Z D, XU Z G, GUO C J, et al. Studies on pathotypes of Xanthomonas campestris pv. oryzae in China[J]. Acta Phytopathologica Sinica, 1990, 20(2): 81-88. (in Chinese with English abstract) | |
[18] | 江西省农业厅. 水稻品种抗白叶枯病鉴定技术规程: DB36/T 1033—2018[S]. 南昌: 江西省质量技术监督局, 2018. |
[19] | 彭绍裘, 范坤成. 水稻纹枯病研究的新进展[J]. 湖南农业科学, 1986(4): 1-6. |
PENG S Q, FAN K C. New progress in the study of rice sheath blight[J]. Hunan Agricultural Sciences, 1986(4): 1-6. (in Chinese) | |
[20] | 刘毅. 水稻纹枯病抗性遗传分析及稻种资源的抗病鉴定与评价[D]. 武汉: 华中农业大学, 2010. |
LIU Y. Genetic analysis of rice sheath blight resistance and rice germplasm identification and evaluation of resistance[D]. Wuhan: Huazhong Agricultural University, 2010. (in Chinese with English abstract) | |
[21] | 安徽省动植物检验检疫标准化技术委员会. 水稻纹枯病抗病性鉴定技术规范: DB34/T 3306—2018[S]. 合肥: 安徽省市场监督管理局, 2018. |
[22] | BAILEY K, FROHN R. Remote sensing analysis of wild rice production using Landsat 7 for the Leech Lake band of Chippewa in Minnesota[J]. Photogrammetric Engineering and Remote Sensing, 2001, 67: 189-192. |
[23] | O’SHEA K, LAROE J, VORSTER A, et al. Improved remote sensing methods to detect northern wild rice (Zizania palustris L.)[J]. Remote Sensing, 2020, 12(18): 3023. |
[24] | SETHY P K, BARPANDA N K, RATH A K, et al. Rice false smut detection based on faster R-CNN[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2020, 19(3): 1590. |
[25] | BARI B S, ISLAM M N, RASHID M, et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework[J]. PeerJ Computer Science, 2021, 7: e432. |
[26] | LI D S, WANG R J, XIE C J, et al. A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network[J]. Sensors, 2020, 20(3): 578. |
[27] | ZHOU G X, ZHANG W Z, CHEN A B, et al. Rapid detection of rice disease based on FCM-KM and faster R-CNN fusion[J]. IEEE Access, 2019, 7: 143190-143206. |
[28] | 赵越, 赵辉, 姜永成, 等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报, 2022, 43(10): 183-189. |
ZHAO Y, ZHAO H, JIANG Y C, et al. Detection method of potato leaf diseases based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 183-189. (in Chinese with English abstract) | |
[29] | SARDOĞAN M, OZEN Y, TUNCER A. Detection of apple leaf diseases using Faster R-CNN[J]. Düzce University Journal of Science & Technology, 2020 (8): 1110-1117. |
[30] | SERT E. A deep learning based approach for the detection of diseases in pepper and potato leaves[J]. Anadolu Journal of Agricultural Sciences, 2021: 167-178. |
[31] | 王远志, 施子珍, 张艳红. 改进的Faster R-CNN用于苹果叶部病害检测[J]. 安庆师范大学学报(自然科学版), 2022, 28(2): 26-30. |
WANG Y Z, SHI Z Z, ZHANG Y H. Disease detection of apple leaf based on improved faster R-CNN[J]. Journal of Anqing Normal University(Natural Science Edition), 2022, 28(2): 26-30. (in Chinese with English abstract) | |
[32] | ZHANG K K, WU Q F, CHEN Y P. Detecting soybean leaf disease from synthetic image using multi-feature fusion faster R-CNN[J]. Computers and Electronics in Agriculture, 2021, 183: 106064. |
[33] | 李就好, 林乐坚, 田凯, 等. 改进Faster R-CNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185. |
LI J H, LIN L J, TIAN K, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster R-CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185. (in Chinese with English abstract) | |
[34] | 李鑫然, 李书琴, 刘斌. 基于改进Faster R_CNN的苹果叶片病害检测模型[J]. 计算机工程, 2021, 47(11): 298-304. |
LI X R, LI S Q, LIU B. Apple leaf diseases detection model based on improved faster R_CNN[J]. Computer Engineering, 2021, 47(11): 298-304. (in Chinese with English abstract) | |
[35] | JHATIAL M J, SHAIKH D R A, SHAIKH N A, et al. Deep learning-based rice leaf diseases detection using YOlOv5[J]. Sukkur IBA Journal of Computing and Mathematical Sciences, 2022, 6(1): 49-61. |
[36] | AGBULOS M K, SARMIENTO Y, VILLAVERDE J. Identification of leaf blast and brown spot diseases on rice leaf with YOLO algorithm[C]// 2021 IEEE 7th International Conference on Control Science and Systems Engineering (ICCSSE). July 30-August 1, 2021, Qingdao, China. IEEE, 2021: 307-312. |
[37] | WANG X W, LIU J. Tomato anomalies detection in greenhouse scenarios based on YOLO-dense[J]. Frontiers in Plant Science, 2021, 12: 634103. |
[38] | WANG H Q, SHANG S Q, WANG D W, et al. Plant disease detection and classification method based on the optimized lightweight YOLOv5 model[J]. Agriculture, 2022, 12(7): 931. |
[39] | DI J, LI Q. A method of detecting apple leaf diseases based on improved convolutional neural network[J]. PLoS One, 2022, 17(2): e0262629. |
[40] | 刘阳, 谢永强, 李忠博, 等. 基于深度学习的目标检测算法研究进展[J]. 通信技术, 2021, 54(9): 2063-2073. |
LIU Y, XIE Y Q, LI Z B, et al. Research progress of deep learning target detection algorithm in security field[J]. Communications Technology, 2021, 54(9): 2063-2073. (in Chinese with English abstract) | |
[41] | ZHOU X Y, WANG D Q, KRÄHENBÜHL P. Objects as points[EB/OL]. [2023-02-05]. https://arxiv.org/abs/1904.07850. |
[42] | LIANG D S, LIU W P, ZHAO L, et al. An improved convolutional neural network for plant disease detection using unmanned aerial vehicle images[J]. Nature Environment and Pollution Technology, 2022, 21(2): 899-908. |
[43] | MASOOD M H, SAIM H, TAJ M, et al. Early disease diagnosis for rice crop[EB/OL].[2023-02-05]. https://arxiv.org/abs/2004.04775. |
[44] | ANANDHAN K, SINGH A S. Detection of paddy crops diseases and early diagnosis using faster regional convolutional neural networks[C]// 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). March 4-5, 2021, Greater Noida, India. IEEE, 2021: 898-902. |
[45] | 江鹏, 陈跃翰. 基于SSD的苹果叶片病害检测方法[J]. 电子技术与软件工程, 2019(10): 56. |
JIANG P, CHEN Y H. Apple leaf disease detection method based on SSD[J]. Electronic Technology & Software Engineering, 2019(10): 56. (in Chinese) | |
[46] | 邸洁, 曲建华. 基于Tiny-YOLO的苹果叶部病害检测[J]. 山东师范大学学报(自然科学版), 2020, 35(1): 78-83. |
DI J, QU J H. A detection method for apple leaf diseases based on Tiny-YOLO[J]. Journal of Shandong Normal University(Natural Science), 2020, 35(1): 78-83. (in Chinese with English abstract) | |
[47] | LI J J, ZHU X Y, JIA R C, et al. Apple-YOLO: a novel mobile terminal detector based on YOLOv5 for early apple leaf diseases[C]//2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). June 27-July 1, 2022. Los Alamitos, CA, USA. IEEE, 2022: 352-361. |
[48] | 刘延鑫, 王俊峰, 杜传印, 等. 基于YOLOv3的多类烟草叶部病害检测研究[J]. 中国烟草科学, 2022, 43(2): 94-100. |
LIU Y X, WANG J F, DU C Y, et al. Detection of various tobacco leaf diseases based on YOLOv3[J]. Chinese Tobacco Science, 2022, 43(2): 94-100. (in Chinese with English abstract) | |
[49] | 刘阗宇, 冯全, 杨森. 基于卷积神经网络的葡萄叶片病害检测方法[J]. 东北农业大学学报, 2018, 49(3): 73-83. |
LIU T Y, FENG Q, YANG S. Detecting grape diseases based on convolutional neural network[J]. Journal of Northeast Agricultural University, 2018, 49(3): 73-83. (in Chinese with English abstract) | |
[50] | 樊湘鹏, 许燕, 周建平, 等. 基于迁移学习和改进CNN的葡萄叶部病害检测系统[J]. 农业工程学报, 2021, 37(6): 151-159. |
FAN X P, XU Y, ZHOU J P, et al. Detection system for grape leaf diseases based on transfer learning and updated CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 151-159. (in Chinese with English abstract) | |
[51] | 陶国柱, 廖义奎, 董力量. 基于深度学习的番茄病害检测识别算法[J]. 农村科学实验, 2021(5): 141-144. |
TAO G Z, LIAO Y K, DONG L L. Detection and recognition algorithm of tomato diseases based on deep learning[J]. Scientific Experiment in Countryside, 2021(5): 141-144. (in Chinese) | |
[52] | ISLAM M A, NYMUR M, SHAMSOJJAMAN M, et al. An automated convolutional neural network based approach for paddy leaf disease detection[J]. International Journal of Advanced Computer Science and Applications, 2021, 12(1): 280-288. |
[53] | LI D W, AHMED F, WU N L, et al. YOLO-JD: a deep learning network for jute diseases and pests detection from images[J]. Plants, 2022, 11(7): 937. |
[54] | SHILL A, RAHMAN M A. Plant disease detection based on YOLOv3 and YOLOv4[C]//2021 International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI). July 8-9, 2021. Rajshahi, Bangladesh. IEEE, 2021: 1-6. |
[55] | 邵明月, 张建华, 冯全, 等. 深度学习在植物叶部病害检测与识别的研究进展[J]. 智慧农业(中英文), 2022, 4(1): 29-46. |
SHAO M Y, ZHANG J H, FENG Q, et al. Research progress of deep learning in detection and recognition of plant leaf diseases[J]. Smart Agriculture, 2022, 4(1): 29-46. (in Chinese with English abstract) | |
[56] | HONG Q Q, JIANG L, ZHANG Z H, et al. A lightweight model for wheat ear Fusarium head blight detection based on RGB images[J]. Remote Sensing, 2022, 14(14): 3481. |
[57] | 戴雨舒, 仲晓春, 孙成明, 等. 基于图像处理和Deeplabv3+模型的小麦赤霉病识别[J]. 中国农机化学报, 2021, 42(9): 209-215. |
DAI Y S, ZHONG X C, SUN C M, et al. Identification of fusarium head blight in wheat-based on image processing and Deeplabv3+model[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 209-215. (in Chinese with English abstract) | |
[58] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture notes in computer science. Cham: Springer International Publishing, 2015: 234-241. |
[59] | JIA Z D, SHI A J, XIE G K, et al. Image segmentation of persimmon leaf diseases based on UNet[C]//2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP). April 15-17, 2022, Xi’an, China. IEEE, 2022: 2036-2039. |
[60] | LIANG X S, WANG B T. Wheat powdery mildew spore images segmentation based on U-net[J]. Journal of Physics: Conference Series, 2020, 1631(1): 012074. |
[61] | CHEN S, ZHANG K F, ZHAO Y D, et al. An approach for rice bacterial leaf streak disease segmentation and disease severity estimation[J]. Agriculture, 2021, 11(5): 420. |
[62] | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
[63] | AGARWAL M, GUPTA S K, BISWAS K K. A compressed and accelerated SegNet for plant leaf disease segmentation: a differential evolution based approach[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Cham: Springer, 2021: 272-284. |
[64] | ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 21-26, 2017, Honolulu, HI, USA. IEEE, 2017: 6230-6239. |
[65] | TASSIS L M, TOZZI DE SOUZA J E, KROHLING R A. A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images[J]. Computers and Electronics in Agriculture, 2021, 186: 106191. |
[66] | 王可, 沈川贵, 罗孟华. 基于深度学习的图像语义分割方法综述[J]. 信息技术与信息化, 2022(4): 23-30. |
WANG K, SHEN C G, LUO M H. Overview of image semantic segmentation methods based on deep learning[J]. Information Technology and Informatization, 2022(4): 23-30. (in Chinese) | |
[67] | LI K Y, ZHANG L X, LI B, et al. Attention-optimized DeepLab V3+for automatic estimation of cucumber disease severity[J]. Plant Methods, 2022, 18(1): 109. |
[68] | YAO J, WANG Y B, XIANG Y, et al. Two-stage detection algorithm for kiwifruit leaf diseases based on deep learning[J]. Plants, 2022, 11(6): 768. |
[69] | WANG C S, DU P F, WU H R, et al. A cucumber leaf disease severity classification method based on the fusion of DeepLabV3+and U-Net[J]. Computers and Electronics in Agriculture, 2021, 189: 106373. |
[70] | 刘文婷, 卢新明. 基于计算机视觉的Transformer研究进展[J]. 计算机工程与应用, 2022, 58(6): 1-16. |
LIU W T, LU X M. Research progress of transformer based on computer vision[J]. Computer Engineering and Applications, 2022, 58(6): 1-16. (in Chinese with English abstract) | |
[71] | XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL].[2023-02-05]. https://arxiv.org/abs/2105.15203. |
[72] | DENG J, LV X, YANG L J, et al. Assessing macro disease index of wheat stripe rust based on segformer with complex background in the field[J]. Sensors, 2022, 22(15): 5676. |
[73] | 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10-25. |
XU D G, WANG L, LI F. Review of typical object detection algorithms for deep learning[J]. Computer Engineering and Applications, 2021, 57(8): 10-25. (in Chinese with English abstract) | |
[74] | DAS S, ROY D, DAS P. Disease feature extraction and disease detection from paddy crops using image processing and deep learning technique[C]//DAS A, NAYAK J, NAIK B, et al. Computational intelligence in pattern recognition. Singapore: Springer, 2020: 443-449. |
[75] | ZHANG Z H, JIANG L, HONG Q Q, et al. Rice disease identification method based on improved Mask R-CNN[C]//2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). September 17-19, 2021, Kunming, China. IEEE, 2022: 250-253. |
[76] | AFZAAL U, BHATTARAI B, PANDEYA Y R, et al. An instance segmentation model for strawberry diseases based on Mask R-CNN[J]. Sensors, 2021, 21(19): 6565. |
[77] | STEWART E L, WIESNER-HANKS T, KACZMAR N, et al. Quantitative phenotyping of northern leaf blight in UAV images using deep learning[J]. Remote Sensing, 2019, 11(19): 2209. |
[78] | STOREY G, MENG Q G, LI B H. Leaf disease segmentation and detection in apple orchards for precise smart spraying in sustainable agriculture[J]. Sustainability, 2022, 14(3): 1458. |
[79] | MU W Q, JIA Z D, LIU Y T, et al. Image segmentation model of pear leaf diseases based on mask R-CNN[C]//2022 International Conference on Image Processing and Media Computing (ICIPMC). May 27-29, 2022, Xi’an, China. IEEE, 2022: 41-45. |
[80] | 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16-31. |
SU L, SUN Y X, YUAN S Z. A survey of instance segmentation research based on deep learning[J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 16-31. (in Chinese with English abstract) | |
[81] | DE BRABANDERE B, NEVEN D, VAN GOOL L. Semantic instance segmentation with a discriminative loss function[EB/OL].[2023-02-05]. https://arxiv.org/abs/1708.02551. |
[82] | BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: real-time instance segmentation[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019, Seoul, Korea (South). IEEE, 2020: 9156-9165. |
[83] | HUANG M F, XU G Q, LI J Y, et al. A method for segmenting disease lesions of maize leaves in real time using attention YOLACT++[J]. Agriculture, 2021, 11(12): 1216. |
[84] | ZHANG J H, KONG F T, ZHAI Z F, et al. Robust image segmentation method for cotton leaf under natural conditions based on immune algorithm and PCNN algorithm[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2018, 32(5): 1854011. |
[85] | ZHANG J H, KONG F T, WU J Z, et al. Automatic image segmentation method for cotton leaves with disease under natural environment[J]. Journal of Integrative Agriculture, 2018, 17(8): 1800-1814. |
[86] | WU J S, WEN C J, CHEN H R, et al. DS-DETR: a model for tomato leaf disease segmentation and damage evaluation[J]. Agronomy, 2022, 12(9): 2023. |
[87] | 何东健, 王鹏, 牛童, 等. 基于改进残差网络的田间葡萄霜霉病病害程度分级模型[J]. 农业机械学报, 2022, 53(1): 235-243. |
HE D J, WANG P, NIU T, et al. Classification model of grape downy mildew disease degree in field based on improved residual network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 235-243. (in Chinese with English abstract) | |
[88] | 万军杰, 祁力钧, 卢中奥, 等. 基于迁移学习的GoogLeNet果园病虫害识别与分级[J]. 中国农业大学学报, 2021, 26(11): 209-221. |
WAN J J, QI L J, LU Z A, et al. Recognition and grading of diseases and pests in orchard by GoogLeNet based on transfer learning[J]. Journal of China Agricultural University, 2021, 26(11): 209-221. (in Chinese with English abstract) | |
[89] | 刘斌, 徐皓玮, 李承泽, 等. 基于快照集成卷积神经网络的苹果叶部病害程度识别[J]. 农业机械学报, 2022, 53(6): 286-294. |
LIU B, XU H W, LI C Z, et al. Apple leaf disease identification method based on snapshot ensemble CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 286-294. (in Chinese with English abstract) | |
[90] | ESGARIO J G M, KROHLING R A, VENTURA J A. Deep learning for classification and severity estimation of coffee leaf biotic stress[J]. Computers and Electronics in Agriculture, 2020, 169: 105162. |
[91] | SHAO M Y, HE P T, ZHANG Y Q, et al. Identification method of cotton leaf diseases based on bilinear coordinate attention enhancement module[J]. Agronomy, 2022, 13(1): 88. |
[92] | GAO Y C, WANG H T, LI M, et al. Automatic tandem dual BlendMask networks for severity assessment of wheat Fusarium head blight[J]. Agriculture, 2022, 12(9): 1493. |
[93] | SU W H, ZHANG J J, YANG C, et al. Automatic evaluation of wheat resistance to Fusarium head blight using dual mask-RCNN deep learning frameworks in computer vision[J]. Remote Sensing, 2020, 13(1): 26. |
[1] | WANG Jie, LU Ruohui, ZHU Weifeng, CHEN Yupei, SHAN Yingjie. Potential of straw returning as substitute for chemical fertilizer of main grain crops in Zhejiang Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1853-1863. |
[2] | SI Linlin, XU Jing, CAO Kai, ZHANG Xian, WANG Jianhong. Response of bacterial community to planting cover crops in virgin upland red soil [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1864-1875. |
[3] | ZHAO Shuhui, ZHANG Zhenhua, OU Zhangdan, TIAN Maoping, CHEN Yumei, ZHAO Ziwei. Preliminary analysis on research hotspot of crop root exudates in China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 534-546. |
[4] | BAI Weiwei, ZHAO Xueni, LUO Bin, ZHAO Wei, HUANG Shuo, ZHANG Han. Study of YOLOv5-based germination detection method for wheat seeds [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 445-454. |
[5] | LI Yonghui, LI Jie, FENG Lidan, HE Jing, ZHANG Xu, LIU Xianglin. Comparison of fruit yield, disease resistance and storage ability of Lycium bararum sprayed with different plant immune inducers [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 164-174. |
[6] | ZHU Shisong, MA Wanli, ZHAO Lishan, ZHENG Yanmei, ZHENG Xianbo, LU Bibo. Apple leaf image segmentation algorithm based on improved LinkNet [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 202-214. |
[7] | CHEN Daohuai, WANG Hangjun. Detection of forest pests based on improved YOLOv4 [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1306-1315. |
[8] | ZHAO Lixian, ZHANG Wangfei, LI Yun, ZHANG Tingwei, HUANG Guoran. Crops classification based on GF-3 satellite data and Η/Α/α- decomposition characteristic parameters [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2491-2503. |
[9] | LI Chao, LI Feng, HUANG Weijia. Fruit variety recognition based on parallel convolutional neural network [J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2533-2541. |
[10] | ZHANG Qingqing, LIU Lianzhong, NING Jingming, WU Guodong, JIANG Zhaohui, LI Mengjie, LI Dongliang. Tea buds recognition under complex scenes based on optimized YOLOV3 model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1740-1747. |
[11] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[12] | XU Li, CHEN Xiaojie, CAO Jingting, LIU Chuchu, DING Ting, JIANG Teng. Resistance mechanism of biocontrol strain DZSG23 against wheat scab [J]. , 2020, 32(11): 2001-2008. |
[13] | WANG Zhangjun, LIU Yan, ZHANG Shuangxi, LIU Fenglou, LI Qingfeng, ZHANG Xiaogang, LIU Shengxiang, JIA Biao. Identification on disease resistance and molecular markers of F2 hybrids from Ningchun No.4 and Hedong black wheat [J]. , 2019, 31(5): 677-687. |
[14] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
[15] | LIANG Jingang, JIAO Yue, LIU Pengcheng, ZHANG Xiujie. Arbuscular mycorrhizal fungi as a potential indicator to assess effects of genetically modified crops on soil microorganisms [J]. , 2018, 30(7): 1267-1272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||