Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 2013-2022.DOI: 10.3969/j.issn.1004-1524.20220072
• Review • Previous Articles
LIANG Shiwei1(), WANG Hongkai2,*(
)
Received:
2022-01-15
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
LIANG Shiwei, WANG Hongkai. Research advances of Cordyceps cicadae[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 2013-2022.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20220072
[1] | 王琪, 刘作易. 药用真菌蝉花的研究进展[J]. 中草药, 2004, 35(4): 469-471. |
WANG Q, LIU Z Y. Advances in studies on medicinal fungi Cordyceps cicadae[J]. Chinese Traditional and Herbal Drugs, 2004, 35(4): 469-471. (in Chinese with English abstract) | |
[2] | NXUMALO W, ELATEEQ A A, SUN Y F. Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis?-A review[J]. Journal of Ethnopharmacology, 2020, 257: 112879. |
[3] | KEPLER R M, LUANGSA-ARD J J, HYWEL-JONES N L, et al. A phylogenetically-based nomenclature for Cordycipitaceae (hypocreales)[J]. IMA Fungus, 2017, 8(2): 335-353. |
[4] | 王春雷, 芦柏震, 侯桂兰. 中国蝉花的研究进展[J]. 中国药学杂志, 2006, 41(4): 244-247. |
WANG C L, LU B Z, HOU G L. Studies advances of Chinese Chanhua[J]. Chinese Pharmaceutical Journal, 2006, 41(4): 244-247. (in Chinese) | |
[5] | 卫亚丽, 杨茂发, 邹晓, 等. 蝉棒束孢菌的生物学活性研究进展[J]. 贵州农业科学, 2014, 42(12): 142-148. |
WEI Y L, YANG M F, ZOU X, et al. Review on bioactive components from Isaria cicadae[J]. Guizhou Agricultural Sciences, 2014, 42(12): 142-148. (in Chinese with English abstract) | |
[6] | LUANGSA-ARD J J, HYWEL-JONES N L, MANOCH L, et al. On the relationships of Paecilomyces sect. Isarioidea species[J]. Mycological Research, 2005, 109(5): 581-589. |
[7] | ZHA L S, XIAO Y P, JEEWON R, et al. Notes on the medicinal mushroom Chanhua (Cordyceps cicadae(Miq.) Massee)[J]. Chiang Mai Journal of Science, 2019, 46(6) : 1023-1035. |
[8] | 李增智, 栾丰刚, HYWEL-JONES NIGEL L, 等. 与蝉花有关的虫草菌生物多样性的研究Ⅱ:重要药用真菌蝉花有性型的发现及命名[J]. 菌物学报, 2021, 40(1): 95-107. |
LI Z Z, LUAN F G, HYWELJONES N L, et al. Biodiversity of cordycipitoid fungi associated with Isaria cicadae Miquel Ⅱ: Teleomorph discovery and nomenclature of Chanhua, an important medicinal fungus in China[J]. Mycosystema, 2021, 40(1): 95-107. (in Chinese with English abstract) | |
[9] | LI C R, WANG Y Q, CHENG W M, et al. Review on research progress and prospects of Cicada flower, Isaria cicadae(ascomycetes)[J]. International Journal of Medicinal Mushrooms, 2021, 23(4): 81-91. |
[10] | KUO Y C, WENG S C, CHOU C J, et al. Activation and proliferation signals in primary human T lymphocytes inhibited by ergosterol peroxide isolated from Cordyceps cicadae[J]. British Journal of Pharmacology, 2003, 140(5): 895-906. |
[11] | XU H H, HAO Z P, WANG L F, et al. Suppression of transferrin expression enhances the susceptibility of Plutella xylostella to Isaria cicadae[J]. Insects, 2020, 11(5): 281. |
[12] | ERGUVEN G O. Comparison of some soil fungi in bioremediation of herbicide acetochlor under agitated culture media[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(4): 570-575. |
[13] | ZOU X, SUN J L, LI J, et al. High flocculation of coal washing wastewater using a novel bioflocculant from Isaria cicadae GZU6722[J]. Polish Journal of Microbiology, 2020, 69(1): 1-10. |
[14] | LIU S S, YAN W J, MA C, et al. Effects of supplemented culture media from solid-state fermented Isaria cicadae on performance, serum biochemical parameters, serum immune indexes, antioxidant capacity and meat quality of broiler chickens[J]. Asian-Australasian Journal of Animal Sciences, 2020, 33(4): 568-578. |
[15] | HE L F, SHI W J, LIU X C, et al. Anticancer action and mechanism of ergosterol peroxide from Paecilomyces cicadae fermentation broth[J]. International Journal of Molecular Sciences, 2018, 19(12): 3935. |
[16] | CHUNYU Y J, LU Z M, LUO Z S, et al. Promotion of metabolite synthesis in Isaria cicadae, a dominant species in the Cicada flower microbiota, by Cicada pupae[J]. Journal of Agricultural and Food Chemistry, 2019, 67(31): 8476-8484. |
[17] | WANG Y, GUO Y, ZHANG L, et al. Characterizations of a new Cordyceps cicadae isolate and production of adenosine and cordycepin[J]. Brazilian Journal of Microbiology, 2012, 43(2): 449-455. |
[18] | WANG J, ZHANG D M, JIA J F, et al. Cyclodepsipeptides from the ascocarps and insect-body portions of fungus Cordyceps cicadae[J]. Fitoterapia, 2014, 97: 23-27. |
[19] | 卢婉妃, 徐佳丹, 许闪闪, 等. 蝉花HPLC指纹图谱的研究[J]. 浙江中医药大学学报, 2013, 37(5): 601-605. |
LU W F, XU J D, XU S S, et al. Study on HPLC fingerprint of Cordyceps cicadae[J]. Journal of Zhejiang Chinese Medical University, 2013, 37(5): 601-605. (in Chinese with English abstract) | |
[20] | 欧晓阳, 许闪闪, 袁强. 湖州地区蝉花中小极性组分的气质联用分析[J]. 长春中医药大学学报, 2013, 29(6): 1123-1125. |
OU X Y, XU S S, YUAN Q. Chemical constitutes of small and medium polarity from Cordyceps sobolifera in Huzhou by GC-MS[J]. Journal of Changchun University of Traditional Chinese Medicine, 2013, 29(6): 1123-1125. (in Chinese with English abstract) | |
[21] | 彭秀秀, 柴一秋, 朱碧纯, 等. 蝉花虫草提取物N6-(2-羟乙基)腺苷对小鼠肾脏缺血再灌注损伤的保护作用[J]. 菌物学报, 2015, 34(2): 311-320. |
PENG X X, CHAI Y Q, ZHU B C, et al. The protective effects of N6-(2-hydroxyethyl)-adenosine extracted from Ophiocordyceps sobolifera on renal ischemia reperfusion injury(IRI) in mice[J]. Mycosystema, 2015, 34(2): 311-320. (in Chinese with English abstract) | |
[22] | SHARMA S K, GAUTAM N, ATRI N S. Optimized extraction, composition, antioxidant and antimicrobial activities of exo and intracellular polysaccharides from submerged culture of Cordyceps cicadae[J]. BMC Complementary and Alternative Medicine, 2015, 15: 446. |
[23] | WANG Y B, HE P F, HE L, et al. Structural elucidation, antioxidant and immunomodulatory activities of a novel heteropolysaccharide from cultured Paecilomyces cicadae(Miquel.) Samson[J]. Carbohydrate Polymers, 2019, 216: 270-281. |
[24] | WANG J H, ZHANG Z L, WANG Y Q, et al. Chemical constituents from mycelia and spores of fungus Cordyceps cicadae[J]. Chinese Herbal Medicines, 2017, 9(2): 188-192. |
[25] | WANG H L, ZHANG J, SIT W H, et al. Cordyceps cicadae induces G2/M cell cycle arrest in MHCC97H human hepatocellular carcinoma cells: a proteomic study[J]. Chinese Medicine, 2014, 9: 15. |
[26] | SUN Y F, WINK M, WANG P, et al. Biological characteristics, bioactive components and antineoplastic properties of sporoderm-broken spores from wild Cordyceps cicadae[J]. Phytomedicine, 2017, 36: 217-228. |
[27] | XU J, TAN Z C, SHEN Z Y, et al. Cordyceps cicadae polysaccharides inhibit human cervical cancer hela cells proliferation via apoptosis and cell cycle arrest[J]. Food and Chemical Toxicology, 2021, 148: 111971. |
[28] | ZHANG L G, WU T, OLATUNJI O J, et al. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae attenuates hydrogen peroxide induced oxidative toxicity in PC12 cells[J]. Metabolic Brain Disease, 2019, 34(5): 1325-1334. |
[29] | XIE H Q, LI X T, CHEN Y J, et al. Ethanolic extract of Cordyceps cicadae exerts antitumor effect on human gastric cancer SGC-7901 cells by inducing apoptosis, cell cycle arrest and endoplasmic reticulum stress[J]. Journal of Ethnopharmacology, 2019, 231: 230-240. |
[30] | XIE H Q, LI X T, YANG W W, et al. N6-(2-hydroxyethyl)-adenosine induces apoptosis via ER stress and autophagy of gastric carcinoma cells in vitro and in vivo[J]. International Journal of Molecular Sciences, 2020, 21(16): 5815. |
[31] | OLATUNJI O J, FENG Y, OLATUNJI O O, et al. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage[J]. Carbohydrate Polymers, 2016, 153: 187-195. |
[32] | OLATUNJI O J, FENG Y, OLATUNJI O O, et al. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties[J]. Biomedicine & Pharmacotherapy, 2016, 81: 7-14. |
[33] | OLATUNJI O J, FENG Y, OLATUNJI O O, et al. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells[J]. Environmental Toxicology and Pharmacology, 2016, 44: 53-61. |
[34] | WU Y Z, LEE C L. Cordyceps cicadae NTTU 868 mycelium with the addition of bioavailable forms of magnesium from deep ocean water prevents the Aβ40 and streptozotocin-induced memory deficit via suppressing Alzheimer’s disease risk factors and increasing magnesium uptake of brain[J]. Fermentation, 2021, 7(1): 39. |
[35] | LIU N, ZHOU S, OLATUNJI O J, et al. Nucleosides rich extract from Condyceps cicadae alleviated cisplatin-induced neurotoxicity in rats: A behavioral, biochemical and histopathological study[J]. Arabian Journal of Chemistry, 2022, 15(1): 103476. |
[36] | ZHU Y L, YU X F, GE Q, et al. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae[J]. International Journal of Biological Macromolecules, 2020, 157: 394-400. |
[37] | 开国银, 周伟, 孙延芳, 等. 人工培养的蝉花子实体对小鼠免疫功能影响的研究[J]. 食品与营养科学, 2020(3): 244-249. |
KAI G Y, ZHOU W, SUN Y F, et al. Effects of artificial cultured Cicada flower fruiting body on immune function in mice[J]. Hans Journal of Food and Nutrition Science, 2020(3): 244-249. (in Chinese with English abstract) | |
[38] | XU Z C, LIN R Y, HOU X N, et al. Immunomodulatory mechanism of a purified polysaccharide isolated from Isaria cicadae Miquel on RAW264.7 cells via activating TLR4-MAPK-NF-κB signaling pathway[J]. International Journal of Biological Macromolecules, 2020, 164: 4329-4338. |
[39] | WANG L, HE Y G, LI Y D, et al. Protective effects of nucleosides-rich extract from Cordyceps cicadae against cisplatin induced testicular damage[J]. Chemistry & Biodiversity, 2020, 17(11): e2000671. |
[40] | KE B J, LEE C L. Cordyceps cicadae NTTU 868 mycelium prevents CCl4-induced hepatic fibrosis in BALB/c mice via inhibiting the expression of pro-inflammatory and pro-fibrotic cytokines[J]. Journal of Functional Foods, 2018, 43: 214-223. |
[41] | HORNG C T, YANG Y L, CHEN C C, et al. Intraocular pressure-lowering effect of Cordyceps cicadae mycelia extract in a glaucoma rat model[J]. International Journal of Medical Sciences, 2021, 18(4): 1007-1014. |
[42] | 孙长胜, 王玉芹, 兰小燕, 等. 复方蝉花片对2型糖尿病患者的临床疗效及安全性评价[J]. 药物评价研究, 2020(4): 655-659. |
SUN C S, WANG Y Q, LAN X Y, et al. Clinical efficacy and safety evaluation of compound Cicada flower tablets on patients with type 2 diabetes[J]. Drug Evaluation Research, 2020(4): 655-659. (in Chinese with English abstract) | |
[43] | SUN C S, WANG Y Q, ZHANG Z L, et al. Distinctive quality control method for solid-state fermented Isaria cicadae from strain Ic-17-7 and application in a rat model of type 2 diabetes[J]. Chinese Journal of Natural Medicines, 2021, 19(12): 921-929. |
[44] | ZHANG X, LI J P, YANG B, et al. Alleviation of liver dysfunction, oxidative stress, and inflammation underlines the protective effects of polysaccharides from Cordyceps cicadae on high sugar/high fat diet-induced metabolic syndrome in rats[J]. Chemistry & Biodiversity, 2021, 18(5): e2100065. |
[45] | ZHANG Y, WU Y T, ZHENG W, et al. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae[J]. Journal of Functional Foods, 2017, 38: 273-279. |
[46] | CEN Q W, WANG Z Y, TANG Z X, et al. Initial purification of antimicrobial fermentation metabolites from Paecilomyces cicadae and its antimicrobial mechanism[J]. LWT-Food Science and Technology, 2021, 148: 111785. |
[47] | TIAN J J, WANG X M, ZHANG X L, et al. Simulated digestion and fecal fermentation behaviors of exopolysaccharides from Paecilomyces cicadae TJJ1213 and its effects on human gut microbiota[J]. International Journal of Biological Macromolecules, 2021, 188: 833-843. |
[48] | HUANG Y S, WANG X, FENG Z D, et al. Cordyceps cicadae prevents renal tubular epithelial cell apoptosis by regulating the SIRT1/p53 pathway in hypertensive renal injury[J]. Evidence-Based Complementary and Alternative Medicine, 2020, 2020: 7202519. |
[49] | CAI Y Z, FENG Z D, JIA Q, et al. Cordyceps cicadae ameliorates renal hypertensive injury and fibrosis through the regulation of SIRT1-mediated autophagy[J]. Frontiers in Pharmacology, 2022, 12: 801094. |
[50] | YANG F, QU Q S, ZHAO C Y, et al. Paecilomyces cicadae-fermented Radix astragali activates podocyte autophagy by attenuating PI3K/AKT/mTOR pathways to protect against diabetic nephropathy in mice[J]. Biomedicine & Pharmacotherapy, 2020, 129: 110479. |
[51] | ZHU R, CHEN Y P, DENG Y Y, et al. Cordyceps cicadae extracts ameliorate renal malfunction in a remnant kidney model[J]. Journal of Zhejiang University SCIENCE B, 2011, 12(12): 1024-1033. |
[52] | ZHENG Y, LI S Y, LI C, et al. Aqueous two-phase extraction, antioxidant and renal protective effects of polysaccharides from spores of Cordyceps cicadae[J]. Processes, 2022, 10(2): 348. |
[53] | DENG J S, JIANG W P, CHEN C C, et al. Cordyceps cicadae mycelia ameliorate cisplatin-induced acute kidney injury by suppressing the TLR4/NF-κ B/MAPK and activating the HO-1/Nrf2 and sirt-1/AMPK pathways in mice[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 7912763. |
[54] | WANG X, QIN A, XIAO F, et al. N6-(2-hydroxyethyl)-adenosine from Cordyceps cicadae protects against diabetic kidney disease via alleviation of oxidative stress and inflammation[J]. Journal of Food Biochemistry, 2019, 43(2): e12727. |
[55] | YIN M, LI N, MAKINDE E A, et al. N6-2-hydroxyethyl-adenosine ameliorate cisplatin induced acute kidney injury in mice[J]. All Life, 2020, 13(1): 244-251. |
[56] | CHYAU C C, WU H L, PENG C C, et al. Potential protection effect of ER homeostasis of N6-(2-hydroxyethyl)adenosine isolated from Cordyceps cicadae in nonsteroidal anti-inflammatory drug-stimulated human proximal tubular cells[J]. International Journal of Molecular Sciences, 2021, 22(4): 1577. |
[57] | WEI C Y, LI W Q, SHAO S S, et al. Structure and chain conformation of a neutral intracellular heteropolysaccharide from mycelium of Paecilomyces cicadae[J]. Carbohydrate Polymers, 2016, 136: 728-737. |
[58] | 陈祝安, 刘广玉, 胡菽英. 蝉花的人工培养及其药理作用研究[J]. 真菌学报, 1993, 12(2): 138-144. |
CHEN Z, LIU G Y, HU S Y. Studies on cultivation of Paecilomyces cicadae and its pharmacological function[J]. Mycosystema, 1993, 12(2): 138-144. (in Chinese with English abstract) | |
[59] | CHEN Y L, YEH S H, LIN T W, et al. A 90-day subchronic toxicity study of submerged mycelial culture of Cordyceps cicadae(ascomycetes) in rats[J]. International Journal of Medicinal Mushrooms, 2015, 17(8): 771-781. |
[60] | XIA Y L, LUO F F, SHANG Y F, et al. Fungal cordycepin biosynthesis is coupled with the production of the safeguard molecule pentostatin[J]. Cell Chemical Biology, 2017, 24(12): 1479-1489.e4. |
[61] | LU Y Z, LUO F F, CEN K, et al. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae[J]. BMC Genomics, 2017, 18(1): 668. |
[62] | HE Y Q, ZHANG W C, PENG F, et al. Metabolomic variation in wild and cultured Cordyceps and mycelia of Isaria cicadae[J]. Biomedical Chromatography: BMC, 2019, 33(4): e4478. |
[63] | PENG Y, WANG L F, GAO Y, et al. Identification and characterization of the glycoside hydrolase family 18 genes from the entomopathogenic fungus Isaria cicadae genome[J]. Canadian Journal of Microbiology, 2020, 66(4): 274-287. |
[64] | LIU T F, LIU Z Y, YAO X Y, et al. Identification of cordycepin biosynthesis-related genes through de novo transcriptome assembly and analysis in Cordyceps cicadae[J]. Royal Society Open Science, 2018, 5(12): 181247. |
[65] | QU Q S, YANG F, ZHAO C Y, et al. Analysis of the bacteria community in wild Cordyceps cicadae and its influence on the production of HEA and nucleosides in Cordyceps cicadae[J]. Journal of Applied Microbiology, 2019, 127(6): 1759-1767. |
[66] | KE B J, LEE C L. Using submerged fermentation to fast increase N6-(2-hydroxyethyl)-adenosine, adenosine and polysaccharide productions of Cordyceps cicadae NTTU 868[J]. AMB Express, 2019, 9(1): 198. |
[67] | 董彩虹, 李文佳, 李增智, 等. 我国虫草产业发展现状、问题及展望: 虫草产业发展金湖宣言[J]. 菌物学报, 2016, 35(1): 1-15. |
DONG C H, LI W J, LI Z Z, et al. Cordyceps industry in China: current status, challenges and perspectives-Jinhu declaration for Cordyceps industry development[J]. Mycosystema, 2016, 35(1): 1-15. (in Chinese with English abstract) | |
[68] | 李栋, 刘常利, 刘靖宇, 等. 利用绿色荧光蛋白GFP研究不同启动子在蝉棒束孢菌中的表达活性[J]. 食用菌学报, 2020, 27(1): 20-28. |
LI D, LIU C L, LIU J Y, et al. Green fluorescent protein reported expression activities of different promoters in Isaria cicadae[J]. Acta Edulis Fungi, 2020, 27(1): 20-28. (in Chinese with English abstract) | |
[69] | YANG N N, JIANG N, MA Q Y, et al. Chemical study of the strain Cordyceps spp. from cell fusion between Cordyceps militaris and Cordyceps cicadae[J]. Journal of Asian Natural Products Research, 2019, 21(5): 449-455. |
[1] | WANG Mengzhu, YANG Guangmei, WU Yuhu, YANG Xuanye, WANG Huihui, CAO Xiaoan, LI Yong, MA Zhongren, MA Xiaoxia. Genomic features of 3 bovine viral diarrhea viruses isolated from newborn claves [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1814-1822. |
[2] | BAI Dingchen, ZHAO Zhifei, GONG Xue, LIU Yuan, NIU Suzhen, CHEN Zhengwu. Genome-wide association analysis of stomatal characters of cultivated local tea plants in Guizhou, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1550-1563. |
[3] | SHOU Weisong, HE Yanjun, SHEN Jia, XU Xinyang. Genome-wide identification and bioinformatics analysis of SWEET gene family in melon [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1591-1603. |
[4] | JIA Beiping, LYU Xuan, YANG Qing, WANG Yinan, LI Wanxiao, XIE Xindi, ZHU Yingqi, WANG Bei, YIN Dongdong, ZHANG Yunkai, WANG Qing, WANG Guijun. Isolation, identification and genetic evolution analysis of novel goose astrovirus in Anhui Province, China [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1048-1057. |
[5] | ZHANG Jiaqiang, LIU Huichun, WANG Jie, XU Wenting, ZHOU Jianghua, ZHU Kaiyuan. Analysis on codon usage patterns of chloroplast genome of Lonicera japonica cv. Damaohua [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 821-830. |
[6] | HAN Lihong, TIAN Xuelian, LIU Chao, FU Xiaolin, WANG Yuanxian. Codon usage bias and its influencing factors in the whole genome of three truffles [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1439-1448. |
[7] | YOU Qi, WU Wenwen, JIANG Yi. Visualization software for plant gene editing identification [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2759-2766. |
[8] | XIONG Xue, ZHAO Lina, YANG Senlin, SAMIAH Arif, ZHANG Yidong. Genome-wide identification of CmCIPK family and its expression analysis under abiotic stress in melon [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1625-1639. |
[9] | JI Kaiyuan, QIU Yueyang, CHENG Ao, JIANG Shudong, PENG Mengling. Genetic diversity of Canine parvovirus in Hefei, Anhui Province from 2018 to 2019 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1817-1825. |
[10] | LIU Kai, FENG Xiaoyu, MA Hengjia, XIE Nan. Complete sequence and gene organization of mitochondrial genome of Megalobrama terminalis from Qiantang River [J]. , 2020, 32(9): 1591-1608. |
[11] | MENG Qiufeng, HU Meihua, WANG Jie, REN Xiliang, GAO Tianyi, CHEN Jianming. Research progress of mustard in Zhejiang Province [J]. , 2020, 32(9): 1732-1740. |
[12] | WANG Changjin, XU Yunlin, CHENG Xinxin, ZHOU Yi, YU Haibing. Genome-wide association study of seed nutritional quality in sweet corn [J]. , 2020, 32(3): 383-389. |
[13] | XU Lihua, LAN Shengzhi, YU Bin, LI Junxing, ZHANG Pengchao, LI Baochen, SU Fei, YUAN Xiufang. Detection and genetic variation analysis of prevalent porcine circovirus type 2 strains in Zhejiang Province [J]. , 2020, 32(11): 1970-1977. |
[14] | QI Jiaming, SUN Shanshan, ZHANG Dongxu, XIAO Jianzhong, XU Zhiwen. Identification and biocontrol activity analysis of biocontrol strain PF-1 based on genome-wide data [J]. , 2020, 32(10): 1816-1822. |
[15] | WANG Xiaowei, MA Qing. Genome-wide association studies for coat color in Tan sheep [J]. , 2020, 32(1): 28-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||